About the Project

.世界杯规则大全图解『wn4.com』澳门足总杯超大比分.w6n2c9o.2022年12月1日14时53分9秒.h7j55xrv5

AdvancedHelp

(0.008 seconds)

21—30 of 838 matching pages

21: 26.2 Basic Definitions
Thus 231 is the permutation σ ( 1 ) = 2 , σ ( 2 ) = 3 , σ ( 3 ) = 1 . … As an example, { 1 , 1 , 1 , 2 , 4 , 4 } is a partition of 13. …See Table 26.2.1 for n = 0 ( 1 ) 50 . For the actual partitions ( π ) for n = 1 ( 1 ) 5 see Table 26.4.1. … The example { 1 , 1 , 1 , 2 , 4 , 4 } has six parts, three of which equal 1. …
22: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
9 e 1 2 x 2 x α + 1 2 L n ( α ) ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) x 2 4 n + 2 α + 2
10 e 1 2 x x 1 2 α L n ( α ) ( x ) x 1 1 4 x 1 4 α 2 x 1 n + 1 2 ( α + 1 )
11 e n 1 x x + 1 L n 1 ( 2 + 1 ) ( 2 n 1 x ) 1 0 2 x ( + 1 ) x 2 1 n 2
12 H n ( x ) 1 2 x 0 2 n
Item 11 of Table 18.8.1 yields (18.39.36) for Z = 1 .
23: 8.26 Tables
  • Zhang and Jin (1996, Table 3.8) tabulates γ ( a , x ) for a = 0.5 , 1 , 3 , 5 , 10 , 25 , 50 , 100 , x = 0 ( .1 ) 1 ( 1 ) 3 , 5 ( 5 ) 30 , 50 , 100 to 8D or 8S.

  • Zhang and Jin (1996, Table 3.9) tabulates I x ( a , b ) for x = 0 ( .05 ) 1 , a = 0.5 , 1 , 3 , 5 , 10 , b = 1 , 10 to 8D.

  • Chiccoli et al. (1988) presents a short table of E p ( x ) for p = 9 2 ( 1 ) 1 2 , 0 x 200 to 14S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Stankiewicz (1968) tabulates E n ( x ) for n = 1 ( 1 ) 10 , x = 0.01 ( .01 ) 5 to 7D.

  • 24: 5.17 Barnes’ G -Function (Double Gamma Function)
    G ( 1 ) = 1 ,
    5.17.3 G ( z + 1 ) = ( 2 π ) z / 2 exp ( 1 2 z ( z + 1 ) 1 2 γ z 2 ) k = 1 ( ( 1 + z k ) k exp ( z + z 2 2 k ) ) .
    5.17.4 Ln G ( z + 1 ) = 1 2 z ln ( 2 π ) 1 2 z ( z + 1 ) + z Ln Γ ( z + 1 ) 0 z Ln Γ ( t + 1 ) d t .
    5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k .
    5.17.7 C = lim n ( k = 1 n k ln k ( 1 2 n 2 + 1 2 n + 1 12 ) ln n + 1 4 n 2 ) = γ + ln ( 2 π ) 12 ζ ( 2 ) 2 π 2 = 1 12 ζ ( 1 ) ,
    25: 26.9 Integer Partitions: Restricted Number and Part Size
    The conjugate to the example in Figure 26.9.1 is 6 + 5 + 4 + 2 + 1 + 1 + 1 . … It is also equal to the number of lattice paths from ( 0 , 0 ) to ( m , k ) that have exactly n vertices ( h , j ) , 1 h m , 1 j k , above and to the left of the lattice path. …
    p 3 ( n ) = 1 + n 2 + 6 n 12 .
    It is also assumed everywhere that | q | < 1 . … Also, when | x q | < 1
    26: Bibliography G
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • W. Groenevelt (2007) Fourier transforms related to a root system of rank 1. Transform. Groups 12 (1), pp. 77–116.
  • V. I. Gromak (1976) The solutions of Painlevé’s fifth equation. Differ. Uravn. 12 (4), pp. 740–742 (Russian).
  • V. I. Gromak (1978) One-parameter systems of solutions of Painlevé equations. Differ. Uravn. 14 (12), pp. 2131–2135 (Russian).
  • J. H. Gunn (1967) Algorithm 300: Coulomb wave functions. Comm. ACM 10 (4), pp. 244–245.
  • 27: 28.6 Expansions for Small q
    Leading terms of the of the power series for m = 7 , 8 , 9 , are: … The coefficients of the power series of a 2 n ( q ) , b 2 n ( q ) and also a 2 n + 1 ( q ) , b 2 n + 1 ( q ) are the same until the terms in q 2 n 2 and q 2 n , respectively. … Numerical values of the radii of convergence ρ n ( j ) of the power series (28.6.1)–(28.6.14) for n = 0 , 1 , , 9 are given in Table 28.6.1. Here j = 1 for a 2 n ( q ) , j = 2 for b 2 n + 2 ( q ) , and j = 3 for a 2 n + 1 ( q ) and b 2 n + 1 ( q ) . … where k is the unique root of the equation 2 E ( k ) = K ( k ) in the interval ( 0 , 1 ) , and k = 1 k 2 . …
    28: 28.26 Asymptotic Approximations for Large q
    28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
    28.26.3 ϕ = 2 h sinh z ( m + 1 2 ) arctan ( sinh z ) .
    Then as h + with fixed z in z > 0 and fixed s = 2 m + 1 ,
    28.26.4 Fc m ( z , h ) 1 + s 8 h cosh 2 z + 1 2 11 h 2 ( s 4 + 86 s 2 + 105 cosh 4 z s 4 + 22 s 2 + 57 cosh 2 z ) + 1 2 14 h 3 ( s 5 + 14 s 3 + 33 s cosh 2 z 2 s 5 + 124 s 3 + 1122 s cosh 4 z + 3 s 5 + 290 s 3 + 1627 s cosh 6 z ) + ,
    28.26.5 Gc m ( z , h ) sinh z cosh 2 z ( s 2 + 3 2 5 h + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cosh 2 z ) + 1 2 14 h 3 ( 5 s 4 + 34 s 2 + 9 s 6 47 s 4 + 667 s 2 + 2835 12 cosh 2 z + s 6 + 505 s 4 + 12139 s 2 + 10395 12 cosh 4 z ) ) + .
    29: 5.23 Approximations
    Cody and Hillstrom (1967) gives minimax rational approximations for ln Γ ( x ) for the ranges 0.5 x 1.5 , 1.5 x 4 , 4 x 12 ; precision is variable. Hart et al. (1968) gives minimax polynomial and rational approximations to Γ ( x ) and ln Γ ( x ) in the intervals 0 x 1 , 8 x 1000 , 12 x 1000 ; precision is variable. … Luke (1969b) gives the coefficients to 20D for the Chebyshev-series expansions of Γ ( 1 + x ) , 1 / Γ ( 1 + x ) , Γ ( x + 3 ) , ln Γ ( x + 3 ) , ψ ( x + 3 ) , and the first six derivatives of ψ ( x + 3 ) for 0 x 1 . …Clenshaw (1962) also gives 20D Chebyshev-series coefficients for Γ ( 1 + x ) and its reciprocal for 0 x 1 . …
    30: 16.12 Products
    16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .