About the Project

matrix notation

AdvancedHelp

(0.002 seconds)

21—30 of 30 matching pages

21: Bibliography D
  • G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris (1994) Detection of the density matrix through optical homodyne tomography without filtered back projection. Phys. Rev. A 50 (5), pp. 4298–4302.
  • H. T. Davis (1933) Tables of Higher Mathematical Functions I. Principia Press, Bloomington, Indiana.
  • P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou (1999b) Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (11), pp. 1335–1425.
  • R. B. Dingle (1973) Asymptotic Expansions: Their Derivation and Interpretation. Academic Press, London-New York.
  • A. J. Durán and F. A. Grünbaum (2005) A survey on orthogonal matrix polynomials satisfying second order differential equations. J. Comput. Appl. Math. 178 (1-2), pp. 169–190.
  • 22: Bibliography S
  • G. W. Stewart (2001) Matrix Algorithms. Vol. 2: Eigensystems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • J. A. Stratton, P. M. Morse, L. J. Chu, and R. A. Hutner (1941) Elliptic Cylinder and Spheroidal Wave Functions, Including Tables of Separation Constants and Coefficients. John Wiley and Sons, Inc., New York.
  • G. Szegő (1967) Orthogonal Polynomials. 3rd edition, American Mathematical Society, New York.
  • G. Szegő (1975) Orthogonal Polynomials. 4th edition, Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, RI.
  • 23: Bibliography I
  • E. L. Ince (1940b) Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 83–99.
  • M. E. H. Ismail and E. Koelink (2011) The J -matrix method. Adv. in Appl. Math. 46 (1-4), pp. 379–395.
  • 24: Bibliography B
  • P. M. Batchelder (1967) An Introduction to Linear Difference Equations. Dover Publications Inc., New York.
  • C. Bingham, T. Chang, and D. Richards (1992) Approximating the matrix Fisher and Bingham distributions: Applications to spherical regression and Procrustes analysis. J. Multivariate Anal. 41 (2), pp. 314–337.
  • P. Bleher and A. Its (1999) Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150 (1), pp. 185–266.
  • D. M. Bressoud (1999) Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. Cambridge University Press, Cambridge.
  • J. T. Broad and W. P. Reinhardt (1976) One- and two-electron photoejection from H : A multichannel J -matrix calculation. Phys. Rev. A 14, pp. 2159–2173.
  • 25: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    Thus, in the notation of §1.17, we have an expansion … this being a matrix element of the resolvent F ( T ) = ( z T ) 1 , this being a key quantity in many parts of physics and applied math, quantum scattering theory being a simple example, see Newton (2002, Ch. 7). … Note that the notations of (1.18.32) and (1.18.47) are used to distinguish the contributions from the discrete and continuous parts of the spectrum. … In unusual cases N = , even for all , such as in the case of the Schrödinger–Coulomb problem ( V = r 1 ) discussed in §18.39 and §33.14, where the point spectrum actually accumulates at the onset of the continuum at λ = 0 , implying an essential singularity, as well as a branch point, in matrix elements of the resolvent, (1.18.66). …
    26: Bibliography K
  • D. E. Knuth (1992) Two notes on notation. Amer. Math. Monthly 99 (5), pp. 403–422.
  • P. Koev and A. Edelman (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comp. 75 (254), pp. 833–846.
  • T. H. Koornwinder and I. Sprinkhuizen-Kuyper (1978) Hypergeometric functions of 2 × 2 matrix argument are expressible in terms of Appel’s functions F 4 . Proc. Amer. Math. Soc. 70 (1), pp. 39–42.
  • 27: Bibliography M
  • W. Magnus, F. Oberhettinger, and R. P. Soni (1966) Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edition, Springer-Verlag, New York-Berlin.
  • N. W. McLachlan (1947) Theory and Application of Mathieu Functions. Clarendon Press, Oxford.
  • J. Meixner and F. W. Schäfke (1954) Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf physikalische und technische Probleme. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXXI, Springer-Verlag, Berlin (German).
  • L. M. Milne-Thomson (1933) The Calculus of Finite Differences. Macmillan and Co. Ltd., London.
  • R. J. Muirhead (1978) Latent roots and matrix variates: A review of some asymptotic results. Ann. Statist. 6 (1), pp. 5–33.
  • 28: Bibliography G
  • G. H. Golub and C. F. Van Loan (1996) Matrix Computations. 3rd edition, Johns Hopkins University Press, Baltimore, MD.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • C. H. Greene, U. Fano, and G. Strinati (1979) General form of the quantum-defect theory. Phys. Rev. A 19 (4), pp. 1485–1509.
  • K. I. Gross and D. St. P. Richards (1987) Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions. Trans. Amer. Math. Soc. 301 (2), pp. 781–811.
  • K. I. Gross and D. St. P. Richards (1991) Hypergeometric functions on complex matrix space. Bull. Amer. Math. Soc. (N.S.) 24 (2), pp. 349–355.
  • 29: 3.11 Approximation Techniques
    This is because in the notation of §3.11(i)
    3.11.26 F ( s ) = f ( s ) = 0 e s t f ( t ) d t
    The matrix is symmetric and positive definite, but the system is ill-conditioned when n is large because the lower rows of the matrix are approximately proportional to one another. … Since X k = X k , the matrix is again symmetric. … The method of the fast Fourier transform (FFT) exploits the structure of the matrix 𝛀 with elements ω n j k , j , k = 0 , 1 , , n 1 . …
    30: 28.2 Definitions and Basic Properties
    28.2.3 ( 1 ζ 2 ) w ′′ ζ w + ( a + 2 q 4 q ζ 2 ) w = 0 .
    iff e π i ν is an eigenvalue of the matrix
    §28.2(v) Eigenvalues a n , b n
    When ν ^ = 0 or 1 , the notation for the two sets of eigenvalues corresponding to each ν ^ is shown in Table 28.2.1, together with the boundary conditions of the associated eigenvalue problem. … Table 28.2.2 gives the notation for the eigenfunctions corresponding to the eigenvalues in Table 28.2.1. …