About the Project

applied to generalized hypergeometric functions

AdvancedHelp

(0.018 seconds)

21—30 of 50 matching pages

21: 10.59 Integrals
§10.59 Integrals
β–Ί
10.59.1 e i ⁒ b ⁒ t ⁒ 𝗃 n ⁑ ( t ) ⁒ d t = { Ο€ ⁒ i n ⁒ P n ⁑ ( b ) , 1 < b < 1 , 1 2 ⁒ Ο€ ⁒ ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
β–ΊFor an integral representation of the Dirac delta in terms of a product of spherical Bessel functions of the first kind see §1.17(ii), and for a generalization see Maximon (1991). …
22: Bibliography
β–Ί
  • G. Alefeld and J. Herzberger (1983) Introduction to Interval Computations. Computer Science and Applied Mathematics, Academic Press Inc., New York.
  • β–Ί
  • G. Allasia and R. Besenghi (1989) Numerical Calculation of the Riemann Zeta Function and Generalizations by Means of the Trapezoidal Rule. In Numerical and Applied Mathematics, Part II (Paris, 1988), C. Brezinski (Ed.), IMACS Ann. Comput. Appl. Math., Vol. 1, pp. 467–472.
  • β–Ί
  • F. M. Arscott (1964b) Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions. International Series of Monographs in Pure and Applied Mathematics, Vol. 66, Pergamon Press, The Macmillan Co., New York.
  • β–Ί
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • β–Ί
  • R. Askey (1975b) Orthogonal Polynomials and Special Functions. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 21, Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • 23: 13.2 Definitions and Basic Properties
    β–Ί M ⁑ ( a , b , z ) is entire in z and a , and is a meromorphic function of b . … β–ΊAlthough M ⁑ ( a , b , z ) does not exist when b = n , n = 0 , 1 , 2 , , many formulas containing M ⁑ ( a , b , z ) continue to apply in their limiting form. … β–ΊIn general, U ⁑ ( a , b , z ) has a branch point at z = 0 . … β–ΊUnless specified otherwise, however, U ⁑ ( a , b , z ) is assumed to have its principal value. … β–Ί
    Kummer’s Transformations
    24: Bibliography W
    β–Ί
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • β–Ί
  • G. Wei and B. E. Eichinger (1993) Asymptotic expansions of some matrix argument hypergeometric functions, with applications to macromolecules. Ann. Inst. Statist. Math. 45 (3), pp. 467–475.
  • β–Ί
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • β–Ί
  • E. P. Wigner (1959) Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Pure and Applied Physics. Vol. 5, Academic Press, New York.
  • β–Ί
  • E. M. Wright (1940a) The asymptotic expansion of the generalized hypergeometric function. Proc. London Math. Soc. (2) 46, pp. 389–408.
  • 25: 18.5 Explicit Representations
    β–Ί
    Chebyshev
    β–Ί
    §18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
    β–Ί
    Laguerre
    β–Ί
    Hermite
    β–ΊFor corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). …
    26: Bibliography N
    β–Ί
  • M. Nardin, W. F. Perger, and A. Bhalla (1992a) Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Software 18 (3), pp. 345–349.
  • β–Ί
  • National Bureau of Standards (1958) Integrals of Airy Functions. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • β–Ί
  • National Bureau of Standards (1967) Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors. 2nd edition, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • β–Ί
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • β–Ί
  • N. E. Nørlund (1955) Hypergeometric functions. Acta Math. 94, pp. 289–349.
  • 27: Bibliography G
    β–Ί
  • B. Gabutti (1980) On the generalization of a method for computing Bessel function integrals. J. Comput. Appl. Math. 6 (2), pp. 167–168.
  • β–Ί
  • W. Gautschi (1998) The incomplete gamma functions since Tricomi. In Tricomi’s Ideas and Contemporary Applied Mathematics (Rome/Turin, 1997), Atti Convegni Lincei, Vol. 147, pp. 203–237.
  • β–Ί
  • W. Gautschi (2002b) Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions. J. Comput. Appl. Math. 139 (1), pp. 173–187.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2007a) Numerical Methods for Special Functions. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • β–Ί
  • X. Guan, O. Zatsarinny, K. Bartschat, B. I. Schneider, J. Feist, and C. J. Noble (2007) General approach to few-cycle intense laser interactions with complex atoms. Phys. Rev. A 76, pp. 053411.
  • 28: Bibliography R
    β–Ί
  • W. H. Reid (1974b) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory. Studies in Appl. Math. 53, pp. 217–224.
  • β–Ί
  • F. E. Relton (1965) Applied Bessel Functions. Dover Publications Inc., New York.
  • β–Ί
  • D. St. P. Richards (Ed.) (1992) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications. Contemporary Mathematics, Vol. 138, American Mathematical Society, Providence, RI.
  • β–Ί
  • D. St. P. Richards (2004) Total positivity properties of generalized hypergeometric functions of matrix argument. J. Statist. Phys. 116 (1-4), pp. 907–922.
  • β–Ί
  • Hans-J. Runckel (1971) On the zeros of the hypergeometric function. Math. Ann. 191 (1), pp. 53–58.
  • 29: Bibliography B
    β–Ί
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • β–Ί
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • β–Ί
  • W. N. Bailey (1964) Generalized Hypergeometric Series. Stechert-Hafner, Inc., New York.
  • β–Ί
  • W. Bühring (1988) An analytic continuation formula for the generalized hypergeometric function. SIAM J. Math. Anal. 19 (5), pp. 1249–1251.
  • β–Ί
  • W. Bühring (1992) Generalized hypergeometric functions at unit argument. Proc. Amer. Math. Soc. 114 (1), pp. 145–153.
  • 30: Bibliography C
    β–Ί
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • β–Ί
  • B. C. Carlson (1977b) Special Functions of Applied Mathematics. Academic Press, New York.
  • β–Ί
  • F. Chapeau-Blondeau and A. Monir (2002) Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50 (9), pp. 2160–2165.
  • β–Ί
  • M. A. Chaudhry and S. M. Zubair (1994) Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 55 (1), pp. 99–124.
  • β–Ί
  • S. Conde and S. L. Kalla (1981) On zeros of the hypergeometric function. Serdica 7 (3), pp. 243–249.