About the Project

.2014年世界杯朝鲜战绩『网址:mxsty.cc』.世界杯1998假球-m6q3s2-2022年11月30日9时27分4秒

AdvancedHelp

(0.005 seconds)

21—30 of 539 matching pages

21: Bibliography K
  • E. G. Kalnins, W. Miller, and P. Winternitz (1976) The group O ( 4 ) , separation of variables and the hydrogen atom. SIAM J. Appl. Math. 30 (4), pp. 630–664.
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • E. L. Kaplan (1948) Auxiliary table for the incomplete elliptic integrals. J. Math. Physics 27, pp. 11–36.
  • K. S. Kölbig (1968) Algorithm 327: Dilogarithm [S22]. Comm. ACM 11 (4), pp. 270–271.
  • T. H. Koornwinder (1989) Meixner-Pollaczek polynomials and the Heisenberg algebra. J. Math. Phys. 30 (4), pp. 767–769.
  • 22: Bibliography F
  • B. R. Fabijonas, D. W. Lozier, and F. W. J. Olver (2004) Computation of complex Airy functions and their zeros using asymptotics and the differential equation. ACM Trans. Math. Software 30 (4), pp. 471–490.
  • B. R. Fabijonas (2004) Algorithm 838: Airy functions. ACM Trans. Math. Software 30 (4), pp. 491–501.
  • N. Fleury and A. Turbiner (1994) Polynomial relations in the Heisenberg algebra. J. Math. Phys. 35 (11), pp. 6144–6149.
  • A. S. Fokas and M. J. Ablowitz (1982) On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23 (11), pp. 2033–2042.
  • L. W. Fullerton (1972) Algorithm 435: Modified incomplete gamma function. Comm. ACM 15 (11), pp. 993–995.
  • 23: Bibliography
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • V. I. Arnol’d (1974) Normal forms of functions in the neighborhood of degenerate critical points. Uspehi Mat. Nauk 29 (2(176)), pp. 11–49 (Russian).
  • V. I. Arnol’d (1975) Critical points of smooth functions, and their normal forms. Uspehi Mat. Nauk 30 (5(185)), pp. 3–65 (Russian).
  • R. Askey (1980) Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal. 11 (6), pp. 938–951.
  • 24: 34.6 Definition: 9 j Symbol
    34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
    34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
    25: Bibliography E
  • C. Eckart (1930) The penetration of a potential barrier by electrons. Phys. Rev. 35 (11), pp. 1303–1309.
  • M. Eichler and D. Zagier (1982) On the zeros of the Weierstrass -function. Math. Ann. 258 (4), pp. 399–407.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1953a) Higher Transcendental Functions. Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1953b) Higher Transcendental Functions. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • L. Euler (1768) Institutiones Calculi Integralis. Opera Omnia (1), Vol. 11, pp. 110–113.
  • 26: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Fox (1960, Table 3) tabulates 2 π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Ai ( x ) , 2 π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Ai ( x ) , π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Bi ( x ) , and π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Bi ( x ) for 3 2 x 3 / 2 = 0 ( .001 ) 0.05 , together with similar auxiliary functions for negative values of x . Precision is 10D.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Gil et al. (2003c) tabulates the only positive zero of Gi ( z ) , the first 10 negative real zeros of Gi ( z ) and Gi ( z ) , and the first 10 complex zeros of Gi ( z ) , Gi ( z ) , Hi ( z ) , and Hi ( z ) . Precision is 11 or 12S.

  • Smirnov (1960) tabulates U 1 ( x , α ) , U 2 ( x , α ) , defined by (9.13.20), (9.13.21), and also U 1 ( x , α ) / x , U 2 ( x , α ) / x , for α = 1 , x = 6 ( .01 ) 10 to 5D or 5S, and also for α = ± 1 4 , ± 1 3 , ± 1 2 , ± 2 3 , ± 3 4 , 5 4 , 4 3 , 3 2 , 5 3 , 7 4 , 2, x = 0 ( .01 ) 6 ; 4D.

  • 27: 18.8 Differential Equations
    Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
    # f ( x ) A ( x ) B ( x ) C ( x ) λ n
    2 ( sin 1 2 x ) α + 1 2 ( cos 1 2 x ) β + 1 2 × P n ( α , β ) ( cos x ) 1 0 1 4 α 2 4 sin 2 1 2 x + 1 4 β 2 4 cos 2 1 2 x ( n + 1 2 ( α + β + 1 ) ) 2
    9 e 1 2 x 2 x α + 1 2 L n ( α ) ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) x 2 4 n + 2 α + 2
    10 e 1 2 x x 1 2 α L n ( α ) ( x ) x 1 1 4 x 1 4 α 2 x 1 n + 1 2 ( α + 1 )
    11 e n 1 x x + 1 L n 1 ( 2 + 1 ) ( 2 n 1 x ) 1 0 2 x ( + 1 ) x 2 1 n 2
    Item 11 of Table 18.8.1 yields (18.39.36) for Z = 1 .
    28: 26.12 Plane Partitions
    26.12.2 6 5 5 4 3 3 6 4 3 3 1 6 4 3 1 1 4 2 2 1 3 1 1 1 1 1
    Table 26.12.1: Plane partitions.
    n pp ( n ) n pp ( n ) n pp ( n )
    11 859 28 24 83234 45 17740 79109
    26.12.15 h = 0 r 1 ( 3 h + 1 ) ( 6 h ) ! ( 2 h ) ! ( 4 h + 1 ) ! ( 4 h ) ! .
    26.12.18 6 6 6 4 3 3 3 2
    26.12.26 pp ( n ) ( ζ ( 3 ) ) 7 / 36 2 11 / 36 ( 3 π ) 1 / 2 n 25 / 36 exp ( 3 ( ζ ( 3 ) ) 1 / 3 ( 1 2 n ) 2 / 3 + ζ ( 1 ) ) ,
    29: 10.75 Tables
  • Zhang and Jin (1996, pp. 185–195) tabulates J n ( x ) , J n ( x ) , Y n ( x ) , Y n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 50 , 100 , x = 1 , 5, 10, 25, 50, 100, 9S; J n + α ( x ) , J n + α ( x ) , Y n + α ( x ) , Y n + α ( x ) , n = 0 ( 1 ) 5 , 10 , 30 , 50 , 100 , α = 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , x = 1 , 5 , 10 , 50 , 8S; real and imaginary parts of J n + α ( z ) , J n + α ( z ) , Y n + α ( z ) , Y n + α ( z ) , n = 0 ( 1 ) 15 , 20 ( 10 ) 50 , 100 , α = 0 , 1 2 , z = 4 + 2 i , 20 + 10 i , 8S.

  • MacDonald (1989) tabulates the first 30 zeros, in ascending order of absolute value in the fourth quadrant, of the function J 0 ( z ) i J 1 ( z ) , 6D. (Other zeros of this function can be obtained by reflection in the imaginary axis).

  • Abramowitz and Stegun (1964, Chapter 11) tabulates 0 x J 0 ( t ) d t , 0 x Y 0 ( t ) d t , x = 0 ( .1 ) 10 , 10D; 0 x t 1 ( 1 J 0 ( t ) ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 5 , 8D.

  • Abramowitz and Stegun (1964, Chapter 11) tabulates e x 0 x I 0 ( t ) d t , e x x K 0 ( t ) d t , x = 0 ( .1 ) 10 , 7D; e x 0 x t 1 ( I 0 ( t ) 1 ) d t , x e x x t 1 K 0 ( t ) d t , x = 0 ( .1 ) 5 , 6D.

  • Zhang and Jin (1996, pp. 296–305) tabulates 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗒 n ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; x 𝗃 n ( x ) , ( x 𝗃 n ( x ) ) , x 𝗒 n ( x ) , ( x 𝗒 n ( x ) ) (Riccati–Bessel functions and their derivatives), n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; real and imaginary parts of 𝗃 n ( z ) , 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗒 n ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) , 𝗄 n ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, z = 4 + 2 i , 20 + 10 i , 8S. (For the notation replace j , y , i , k by 𝗃 , 𝗒 , 𝗂 ( 1 ) , 𝗄 , respectively.)

  • 30: Bibliography L
  • D. Le (1985) An efficient derivative-free method for solving nonlinear equations. ACM Trans. Math. Software 11 (3), pp. 250–262.
  • A. Leitner and J. Meixner (1960) Eine Verallgemeinerung der Sphäroidfunktionen. Arch. Math. 11, pp. 29–39.
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • N. A. Lukaševič (1967b) On the theory of Painlevé’s third equation. Differ. Uravn. 3 (11), pp. 1913–1923 (Russian).
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.