About the Project

asymptotic and order symbols

AdvancedHelp

(0.003 seconds)

11—20 of 41 matching pages

11: 2.11 Remainder Terms; Stokes Phenomenon
In order to guard against this kind of error remaining undetected, the wanted function may need to be computed by another method (preferably nonasymptotic) for the smallest value of the (large) asymptotic variable x that is intended to be used. … For second-order differential equations, see Olde Daalhuis and Olver (1995a), Olde Daalhuis (1995, 1996), and Murphy and Wood (1997). For higher-order differential equations, see Olde Daalhuis (1998a, b). …
12: 15.12 Asymptotic Approximations
§15.12 Asymptotic Approximations
§15.12(i) Large Variable
§15.12(ii) Large c
For this result and an extension to an asymptotic expansion with error bounds see Jones (2001). … For other extensions, see Wagner (1986), Temme (2003) and Temme (2015, Chapters 12 and 28).
13: 8.11 Asymptotic Approximations and Expansions
§8.11 Asymptotic Approximations and Expansions
where δ denotes an arbitrary small positive constant. … For an exponentially-improved asymptotic expansion (§2.11(iii)) see Olver (1991a). … With x = 1 , an asymptotic expansion of e n ( n x ) / e n x follows from (8.11.14) and (8.11.16). …
14: 13.8 Asymptotic Approximations for Large Parameters
§13.8 Asymptotic Approximations for Large Parameters
§13.8(ii) Large b and z , Fixed a and b / z
For other asymptotic expansions for large b and z see López and Pagola (2010). …
§13.8(iii) Large a
15: Bibliography F
  • J. L. Fields and Y. L. Luke (1963a) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II. J. Math. Anal. Appl. 7 (3), pp. 440–451.
  • J. L. Fields and Y. L. Luke (1963b) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. J. Math. Anal. Appl. 6 (3), pp. 394–403.
  • J. L. Fields (1965) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. III. J. Math. Anal. Appl. 12 (3), pp. 593–601.
  • J. P. M. Flude (1998) The Edmonds asymptotic formulas for the 3 j and 6 j symbols. J. Math. Phys. 39 (7), pp. 3906–3915.
  • C. L. Frenzen (1987b) On the asymptotic expansion of Mellin transforms. SIAM J. Math. Anal. 18 (1), pp. 273–282.
  • 16: Bibliography D
  • T. M. Dunster, R. B. Paris, and S. Cang (1998) On the high-order coefficients in the uniform asymptotic expansion for the incomplete gamma function. Methods Appl. Anal. 5 (3), pp. 223–247.
  • T. M. Dunster (1990b) Uniform asymptotic solutions of second-order linear differential equations having a double pole with complex exponent and a coalescing turning point. SIAM J. Math. Anal. 21 (6), pp. 1594–1618.
  • T. M. Dunster (1994b) Uniform asymptotic solutions of second-order linear differential equations having a simple pole and a coalescing turning point in the complex plane. SIAM J. Math. Anal. 25 (2), pp. 322–353.
  • T. M. Dunster (1996a) Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function. Proc. Roy. Soc. London Ser. A 452, pp. 1331–1349.
  • T. M. Dunster (2003b) Uniform asymptotic expansions for associated Legendre functions of large order. Proc. Roy. Soc. Edinburgh Sect. A 133 (4), pp. 807–827.
  • 17: 13.7 Asymptotic Expansions for Large Argument
    §13.7 Asymptotic Expansions for Large Argument
    §13.7(ii) Error Bounds
    §13.7(iii) Exponentially-Improved Expansion
    For extensions to hyperasymptotic expansions see Olde Daalhuis and Olver (1995a).
    18: Bibliography B
  • C. B. Balogh (1967) Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math. 15, pp. 1315–1323.
  • W. Barrett (1981) Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V. Philos. Trans. Roy. Soc. London Ser. A 301, pp. 75–162.
  • M. V. Berry and C. J. Howls (1993) Unfolding the high orders of asymptotic expansions with coalescing saddles: Singularity theory, crossover and duality. Proc. Roy. Soc. London Ser. A 443, pp. 107–126.
  • J. P. Boyd (1998) Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics. Mathematics and its Applications, Vol. 442, Kluwer Academic Publishers, Boston-Dordrecht.
  • W. G. C. Boyd (1990a) Asymptotic Expansions for the Coefficient Functions Associated with Linear Second-order Differential Equations: The Simple Pole Case. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 124, pp. 53–73.
  • 19: Bibliography L
  • S. Lai and Y. Chiu (1990) Exact computation of the 3 - j and 6 - j symbols. Comput. Phys. Comm. 61 (3), pp. 350–360.
  • S. Lai and Y. Chiu (1992) Exact computation of the 9 - j symbols. Comput. Phys. Comm. 70 (3), pp. 544–556.
  • H. A. Lauwerier (1974) Asymptotic Analysis. Mathematical Centre Tracts, Mathematisch Centrum, Amsterdam.
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • E. R. Love (1972a) Addendum to: “Changing the order of integration”. J. Austral. Math. Soc. 14, pp. 383–384.
  • 20: 19.12 Asymptotic Approximations
    §19.12 Asymptotic Approximations
    With ψ ( x ) denoting the digamma function (§5.2(i)) in this subsection, the asymptotic behavior of K ( k ) and E ( k ) near the singularity at k = 1 is given by the following convergent series:
    19.12.1 K ( k ) = m = 0 ( 1 2 ) m ( 1 2 ) m m ! m ! k 2 m ( ln ( 1 k ) + d ( m ) ) , 0 < | k | < 1 ,
    For the asymptotic behavior of F ( ϕ , k ) and E ( ϕ , k ) as ϕ 1 2 π and k 1 see Kaplan (1948, §2), Van de Vel (1969), and Karp and Sitnik (2007). … Asymptotic approximations for Π ( ϕ , α 2 , k ) , with different variables, are given in Karp et al. (2007). …