About the Project

Liouville transformation

AdvancedHelp

(0.002 seconds)

11—19 of 19 matching pages

11: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
These are based on the Liouville normal form of (1.13.29). … The materials developed here follow from the extensions of the Sturm–Liouville theory of second order ODEs as developed by Weyl, to include the limit point and limit circle singular cases. …
12: Bibliography O
  • F. Oberhettinger and T. P. Higgins (1961) Tables of Lebedev, Mehler and Generalized Mehler Transforms. Mathematical Note Technical Report 246, Boeing Scientific Research Lab, Seattle.
  • F. Oberhettinger (1990) Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer-Verlag, Berlin.
  • F. Oberhettinger (1972) Tables of Bessel Transforms. Springer-Verlag, Berlin-New York.
  • F. Oberhettinger (1974) Tables of Mellin Transforms. Springer-Verlag, Berlin-New York.
  • F. W. J. Olver (1978) General connection formulae for Liouville-Green approximations in the complex plane. Philos. Trans. Roy. Soc. London Ser. A 289, pp. 501–548.
  • 13: 18.38 Mathematical Applications
    The basic ideas of Gaussian quadrature, and their extensions to non-classical weight functions, and the computation of the corresponding quadrature abscissas and weights, have led to discrete variable representations, or DVRs, of Sturm–Liouville and other differential operators. … It has elegant structures, including N -soliton solutions, Lax pairs, and Bäcklund transformations. While the Toda equation is an important model of nonlinear systems, the special functions of mathematical physics are usually regarded as solutions to linear equations. …
    Radon Transform
    14: 18.39 Applications in the Physical Sciences
    The corresponding eigenfunction transform is a generalization of the Kontorovich–Lebedev transform §10.43(v), see Faraut (1982, §IV). … An important, and perhaps unexpected, feature of the EOP’s is now pointed out by noting that for 1D Schrödinger operators, or equivalent Sturm-Liouville ODEs, having discrete spectra with L 2 eigenfunctions vanishing at the end points, in this case ± see Simon (2005c, Theorem 3.3, p. 35), such eigenfunctions satisfy the Sturm oscillation theorem. …
    15: 1.15 Summability Methods
    where F ( t ) is the Fourier transform of f ( x ) 1.14(i)). … Moreover, lim y 0 + Φ ( x + i y ) is the Hilbert transform of f ( x ) 1.14(v)). … For α > 0 and x 0 , the Riemann-Liouville fractional integral of order α is defined by …
    16: Bibliography
  • M. J. Ablowitz and H. Segur (1981) Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • N. I. Akhiezer (1988) Lectures on Integral Transforms. Translations of Mathematical Monographs, Vol. 70, American Mathematical Society, Providence, RI.
  • W. O. Amrein, A. M. Hinz, and D. B. Pearson (Eds.) (2005) Sturm-Liouville Theory. Birkhäuser Verlag, Basel.
  • W. L. Anderson (1982) Algorithm 588. Fast Hankel transforms using related and lagged convolutions. ACM Trans. Math. Software 8 (4), pp. 369–370.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • 17: Bibliography B
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • R. Barakat and E. Parshall (1996) Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy. Appl. Math. Lett. 9 (5), pp. 21–26.
  • A. P. Bassom, P. A. Clarkson, and A. C. Hicks (1995) Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math. 95 (1), pp. 1–71.
  • J. P. Boyd and A. Natarov (1998) A Sturm-Liouville eigenproblem of the fourth kind: A critical latitude with equatorial trapping. Stud. Appl. Math. 101 (4), pp. 433–455.
  • W. G. C. Boyd (1990b) Stieltjes transforms and the Stokes phenomenon. Proc. Roy. Soc. London Ser. A 429, pp. 227–246.
  • 18: Bibliography L
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • L. Lorch, M. E. Muldoon, and P. Szegő (1970) Higher monotonicity properties of certain Sturm-Liouville functions. III. Canad. J. Math. 22, pp. 1238–1265.
  • L. Lorch, M. E. Muldoon, and P. Szegő (1972) Higher monotonicity properties of certain Sturm-Liouville functions. IV. Canad. J. Math. 24, pp. 349–368.
  • L. Lorch and P. Szegő (1963) Higher monotonicity properties of certain Sturm-Liouville functions.. Acta Math. 109, pp. 55–73.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.
  • 19: 1.9 Calculus of a Complex Variable
    Liouville’s Theorem
    Conformal Transformation
    Bilinear Transformation
    Other names for the bilinear transformation are fractional linear transformation, homographic transformation, and Möbius transformation. …