32.4 Isomonodromy Problems32.6 Hamiltonian Structure

§32.5 Integral Equations

Let K(z,\zeta) be the solution of

32.5.1K(z,\zeta)=k\mathop{\mathrm{Ai}\/}\nolimits\!\left(\frac{z+\zeta}{2}\right)+\frac{k^{2}}{4}\*\int _{z}^{\infty}\!\!\!\int _{z}^{\infty}K(z,s)\mathop{\mathrm{Ai}\/}\nolimits\!\left(\frac{s+t}{2}\right)\mathop{\mathrm{Ai}\/}\nolimits\!\left(\frac{t+\zeta}{2}\right)dsdt,

where k is a real constant, and \mathop{\mathrm{Ai}\/}\nolimits\!\left(z\right) is defined in §9.2. Then

32.5.2w(z)=K(z,z),

satisfies \mbox{P}_{{\mbox{\scriptsize II}}} with \alpha=0 and the boundary condition

32.5.3w(z)\sim k\mathop{\mathrm{Ai}\/}\nolimits\!\left(z\right),z\to+\infty.