About the Project

Julia sets

AdvancedHelp

(0.001 seconds)

11—20 of 566 matching pages

11: 22.5 Special Values
For example, at z = K + i K , sn ( z , k ) = 1 / k , d sn ( z , k ) / d z = 0 . … For example, sn ( 1 2 K , k ) = ( 1 + k ) 1 / 2 . …
Table 22.5.2: Other special values of Jacobian elliptic functions.
z
sn z ( 1 + k ) 1 / 2 ( ( 1 + k ) 1 / 2 + i ( 1 k ) 1 / 2 ) / ( 2 k ) 1 / 2 i k 1 / 2
If k 0 + , then K π / 2 and K ; if k 1 , then K and K π / 2 . … For values of K , K when k 2 = 1 2 (lemniscatic case) see §23.5(iii), and for k 2 = e i π / 3 (equianharmonic case) see §23.5(v). …
12: 10.55 Continued Fractions
For continued fractions for 𝗃 n + 1 ( z ) / 𝗃 n ( z ) and 𝗂 n + 1 ( 1 ) ( z ) / 𝗂 n ( 1 ) ( z ) see Cuyt et al. (2008, pp. 350, 353, 362, 363, 367–369).
13: 12.6 Continued Fraction
For a continued-fraction expansion of the ratio U ( a , x ) / U ( a 1 , x ) see Cuyt et al. (2008, pp. 340–341).
14: 9.6 Relations to Other Functions
9.6.3 Ai ( z ) = π 1 ( z / 3 ) K ± 2 / 3 ( ζ ) = ( z / 3 ) ( I 2 / 3 ( ζ ) I 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) e π i / 6 H 2 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e 5 π i / 6 H 2 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e π i / 6 H 2 / 3 ( 2 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e 5 π i / 6 H 2 / 3 ( 2 ) ( ζ e π i / 2 ) ,
9.6.6 Ai ( z ) = ( z / 3 ) ( J 1 / 3 ( ζ ) + J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) ,
9.6.7 Ai ( z ) = ( z / 3 ) ( J 2 / 3 ( ζ ) J 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 6 H 2 / 3 ( 1 ) ( ζ ) + e π i / 6 H 2 / 3 ( 2 ) ( ζ ) ) = 1 2 ( z / 3 ) ( e 5 π i / 6 H 2 / 3 ( 1 ) ( ζ ) + e 5 π i / 6 H 2 / 3 ( 2 ) ( ζ ) ) ,
9.6.8 Bi ( z ) = z / 3 ( J 1 / 3 ( ζ ) J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e 2 π i / 3 H 1 / 3 ( 1 ) ( ζ ) + e 2 π i / 3 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 3 H 1 / 3 ( 1 ) ( ζ ) + e π i / 3 H 1 / 3 ( 2 ) ( ζ ) ) ,
9.6.9 Bi ( z ) = ( z / 3 ) ( J 2 / 3 ( ζ ) + J 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ ) + e π i / 3 H 2 / 3 ( 2 ) ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ ) + e π i / 3 H 2 / 3 ( 2 ) ( ζ ) ) .
15: 10.62 Graphs
See accompanying text
Figure 10.62.3: e x / 2 ber x , e x / 2 bei x , e x / 2 M ( x ) , 0 x 8 . Magnify
See accompanying text
Figure 10.62.4: e x / 2 ker x , e x / 2 kei x , e x / 2 N ( x ) , 0 x 8 . Magnify
16: 11.8 Analogs to Kelvin Functions
§11.8 Analogs to Kelvin Functions
For properties of Struve functions of argument x e ± 3 π i / 4 see McLachlan and Meyers (1936).
17: 4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
π / 6 1 2 1 2 3 1 3 3 2 2 3 3 3
π / 4 1 2 2 1 2 2 1 2 2 1
π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
π / 2 1 0 1 0
2 π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
18: 17.7 Special Cases of Higher ϕ s r Functions
17.7.5 ϕ 2 3 ( a , b , c e , f ; q , q ) + ( q / e , a , b , c , q f / e ; q ) ( e / q , a q / e , b q / e , c q / e , f ; q ) ϕ 2 3 ( a q / e , b q / e , c q / e q 2 / e , q f / e ; q , q ) = ( q / e , f / a , f / b , f / c ; q ) ( a q / e , b q / e , c q / e , f ; q ) ,
where λ = c ( a b / q ) 1 2 . …
17.7.14 ϕ 7 8 ( a , q a 1 2 , q a 1 2 , b , c , d , e , q n a 1 2 , a 1 2 , a q / b , a q / c , a q / d , a q / e , a q n + 1 ; q , q ) = ( a q , a q / ( b c ) , a q / ( b d ) , a q / ( c d ) ; q ) n ( a q / b , a q / c , a q / d , a q / ( b c d ) ; q ) n ,
17.7.15 ϕ 5 6 ( a , q a 1 2 , q a 1 2 , b , c , d a 1 2 , a 1 2 , a q / b , a q / c , a q / d ; q , a q b c d ) = ( a q , a q / ( b c ) , a q / ( b d ) , a q / ( c d ) ; q ) ( a q / b , a q / c , a q / d , a q / ( b c d ) ; q ) ,
17.7.17 ϕ 7 8 ( a , q a 1 2 , q a 1 2 , b , c , d , e , f a 1 2 , a 1 2 , a q / b , a q / c , a q / d , a q / e , a q / f ; q , q ) b a ( a q , c , d , e , f , b q / a , b q / c , b q / d , b q / e , b q / f ; q ) ( a q / b , a q / c , a q / d , a q / e , a q / f , b c / a , b d / a , b e / a , b f / a , b 2 q / a ; q ) ϕ 7 8 ( b 2 / a , q b a 1 2 , q b a 1 2 , b , b c / a , b d / a , b e / a , b f / a b a 1 2 , b a 1 2 , b q / a , b q / c , b q / d , b q / e , b q / f ; q , q ) = ( a q , b / a , a q / ( c d ) , a q / ( c e ) , a q / ( c f ) , a q / ( d e ) , a q / ( d f ) , a q / ( e f ) ; q ) ( a q / c , a q / d , a q / e , a q / f , b c / a , b d / a , b e / a , b f / a ; q ) ,
19: 9.10 Integrals
9.10.4 x Ai ( t ) d t 1 2 π 1 / 2 x 3 / 4 exp ( 2 3 x 3 / 2 ) , x ,
9.10.6 x Ai ( t ) d t = π 1 / 2 ( x ) 3 / 4 cos ( 2 3 ( x ) 3 / 2 + 1 4 π ) + O ( | x | 9 / 4 ) , x ,
9.10.7 x Bi ( t ) d t = π 1 / 2 ( x ) 3 / 4 sin ( 2 3 ( x ) 3 / 2 + 1 4 π ) + O ( | x | 9 / 4 ) , x .
9.10.18 Ai ( z ) = 3 z 5 / 4 e ( 2 / 3 ) z 3 / 2 4 π 0 t 3 / 4 e ( 2 / 3 ) t 3 / 2 Ai ( t ) z 3 / 2 + t 3 / 2 d t , | ph z | < 2 3 π .
9.10.19 Bi ( x ) = 3 x 5 / 4 e ( 2 / 3 ) x 3 / 2 2 π 0 t 3 / 4 e ( 2 / 3 ) t 3 / 2 Ai ( t ) x 3 / 2 t 3 / 2 d t , x > 0 ,
20: 22.7 Landen Transformations
22.7.2 sn ( z , k ) = ( 1 + k 1 ) sn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.4 dn ( z , k ) = dn 2 ( z / ( 1 + k 1 ) , k 1 ) ( 1 k 1 ) 1 + k 1 dn 2 ( z / ( 1 + k 1 ) , k 1 ) .
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
22.7.8 dn ( z , k ) = ( 1 k 2 ) ( dn 2 ( z / ( 1 + k 2 ) , k 2 ) + k 2 ) k 2 2 dn ( z / ( 1 + k 2 ) , k 2 ) .