22.4 Periods, Poles, and Zeros22.6 Elementary Identities

§22.5 Special Values

Contents

§22.5(i) Special Values of z

Table 22.5.1 gives the value of each of the 12 Jacobian elliptic functions, together with its z-derivative (or at a pole, the residue), for values of z that are integer multiples of K, iK^{{\prime}}. For example, at z=K+iK^{{\prime}}, \mathop{\mathrm{sn}\/}\nolimits\left(z,k\right)=1/k, \ifrac{d\mathop{\mathrm{sn}\/}\nolimits\left(z,k\right)}{dz}=0. (The modulus k is suppressed throughout the table.)

Table 22.5.2 gives \mathop{\mathrm{sn}\/}\nolimits\left(z,k\right), \mathop{\mathrm{cn}\/}\nolimits\left(z,k\right), \mathop{\mathrm{dn}\/}\nolimits\left(z,k\right) for other special values of z. For example, \mathop{\mathrm{sn}\/}\nolimits\left(\frac{1}{2}K,k\right)=(1+k^{{\prime}})^{{-1/2}}. For the other nine functions ratios can be taken; compare (22.2.10).

§22.5(ii) Limiting Values of k

If k\to 0+, then K\to\pi/2 and K^{{\prime}}\to\infty; if k\to 1-, then K\to\infty and K^{{\prime}}\to\pi/2. In these cases the elliptic functions degenerate into elementary trigonometric and hyperbolic functions, respectively. See Tables 22.5.3 and 22.5.4.

Expansions for K,K^{{\prime}} as k\to 0 or 1 are given in §§19.5, 19.12.

For values of K,K^{{\prime}} when k^{2}=\frac{1}{2} (lemniscatic case) see §23.5(iii), and for k^{2}=e^{{i\pi/3}} (equianharmonic case) see §23.5(v).