§22.5 Special Values
Contents
§22.5(i) Special Values of
Table 22.5.1 gives the value of each of the 12 Jacobian elliptic
functions, together with its
-derivative (or at a pole, the residue), for values of
that are integer
multiples of
,
. For example, at
,
,
.
(The modulus
is suppressed throughout the table.)
Table 22.5.1: Jacobian elliptic function values, together with derivatives or
residues, for special values of the variable.
| 0 | |||||||
|---|---|---|---|---|---|---|---|
|
|
|||||||
|
|
|||||||
|
|
|||||||
Table 22.5.2 gives
,
,
for other special values of
. For example,
. For the other nine functions
ratios can be taken; compare (22.2.10).
Table 22.5.2: Other special values of Jacobian elliptic functions.
§22.5(ii) Limiting Values of
If
, then
and
; if
, then
and
. In these cases the elliptic functions
degenerate into elementary trigonometric and hyperbolic functions,
respectively. See Tables 22.5.3 and 22.5.4.
Table 22.5.3: Limiting forms of Jacobian elliptic functions as
.
|
|
|
|
|
||||
|---|---|---|---|---|---|---|---|
|
|
|
|
|
||||
|
|
1 |
|
1 |
|
|
Table 22.5.4: Limiting forms of Jacobian elliptic functions as
.
|
|
|
1 |
|
1 |
|
||
|---|---|---|---|---|---|---|---|
|
|
|
|
|
||||
|
|
|
|
|

