23.4 Graphics23.6 Relations to Other Functions

§23.5 Special Lattices

Contents

§23.5(i) Real-Valued Functions

The Weierstrass functions take real values on the real axis iff the lattice is fixed under complex conjugation: \mathbb{L}=\overline{\mathbb{L}}; equivalently, when g_{2},g_{3}\in\Real. This happens in the cases treated in the following four subsections.

§23.5(ii) Rectangular Lattice

This occurs when both \omega _{1} and \omega _{3}/i are real and positive. Then \Delta>0 and the parallelogram with vertices at 0, 2\omega _{1}, 2\omega _{1}+2\omega _{3}, 2\omega _{3} is a rectangle.

In this case the lattice roots e_{1}, e_{2}, and e_{3} are real and distinct. When they are identified as in (23.3.9)

23.5.1
e_{1}>e_{2}>e_{3},
e_{1}>0>e_{3}.

Also, e_{2} and g_{3} have opposite signs unless \omega _{3}=i\omega _{1}, in which event both are zero.

As functions of \imagpart{\omega _{3}}, e_{1} and e_{2} are decreasing and e_{3} is increasing.

§23.5(iii) Lemniscatic Lattice

This occurs when \omega _{1} is real and positive and \omega _{3}=i\omega _{1}. The parallelogram 0, 2\omega _{1}, 2\omega _{1}+2\omega _{3}, 2\omega _{3} is a square, and

23.5.2\eta _{1}=i\eta _{3}=\pi/(4\omega _{1}),
23.5.3
e_{1}=-e_{3}=\left(\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{4}\right)\right)^{4}/(32\pi\omega _{1}^{2}),
e_{2}=0,
23.5.4
g_{2}=\left(\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{4}\right)\right)^{8}/(256\pi^{2}\omega _{1}^{4}),
g_{3}=0.

Note also that in this case \tau=i. In consequence,

23.5.5
k^{2}=\tfrac{1}{2},
\mathop{K\/}\nolimits\!\left(k\right)={\mathop{K\/}\nolimits^{{\prime}}}\!\left(k\right)=\ifrac{\left(\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{4}\right)\right)^{2}}{\left(4\sqrt{\pi}\right)}.

§23.5(iv) Rhombic Lattice

This occurs when \omega _{1} is real and positive, \imagpart{\omega _{3}}>0, \realpart{\omega _{3}}=\tfrac{1}{2}\omega _{1}, and \Delta<0. The parallelogram 0, 2\omega _{1}-2\omega _{3}, 2\omega _{1}, 2\omega _{3}, is a rhombus: see Figure 23.5.1.

The lattice root e_{1} is real, and e_{3}=\bar{e}_{2}, with \imagpart{e_{2}}>0. e_{1} and g_{3} have the same sign unless 2\omega _{3}=(1+i)\omega _{1} when both are zero: the pseudo-lemniscatic case. As a function of \imagpart{e_{3}} the root e_{1} is increasing. For the case \omega _{3}=e^{{\pi i/3}}\omega _{1} see §23.5(v).

§23.5(v) Equianharmonic Lattice

This occurs when \omega _{1} is real and positive and \omega _{3}=e^{{\pi i/3}}\omega _{1}. The rhombus 0, 2\omega _{1}-2\omega _{3}, 2\omega _{1}, 2\omega _{3} can be regarded as the union of two equilateral triangles: see Figure 23.5.2.

See accompanying text
Figure 23.5.1: Rhombic lattice. \realpart{(2\omega _{3})}=\omega _{1}. Magnify
See accompanying text
Figure 23.5.2: Equianharmonic lattice. 2\omega _{3}=e^{{\pi i/3}}2\omega _{1}, 2\omega _{1}-2\omega _{3}=e^{{-\pi i/3}}2\omega _{1}. Magnify
23.5.6\eta _{1}=e^{{\pi i/3}}\eta _{3}=\frac{\pi}{2\sqrt{3}\omega _{1}},

and the lattice roots and invariants are given by

23.5.7e_{1}=e^{{2\pi i/3}}e_{3}=e^{{-2\pi i/3}}e_{2}=\frac{\left(\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{3}\right)\right)^{6}}{2^{{14/3}}\pi^{2}\omega _{1}^{2}},
23.5.8
g_{2}=0,
g_{3}=\frac{\left(\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{3}\right)\right)^{{18}}}{(4\pi\omega _{1})^{6}}.