About the Project

Jacobi zeta function

AdvancedHelp

(0.005 seconds)

21—30 of 33 matching pages

21: 27.18 Methods of Computation: Primes
An analytic approach using a contour integral of the Riemann zeta function25.2(i)) is discussed in Borwein et al. (2000). … The APR (Adleman–Pomerance–Rumely) algorithm for primality testing is based on Jacobi sums. …
22: Errata
  • Source citations

    Specific source citations and proof metadata are now given for all equations in Chapter 25 Zeta and Related Functions.

  • Equation (19.25.37)

    The Weierstrass zeta function was incorrectly linked to the definition of the Riemann zeta function. However, to the eye, the function appeared correct. The link was corrected.

  • Equation (25.2.4)

    The original constraint, s > 0 , was removed because, as stated after (25.2.1), ζ ( s ) is meromorphic with a simple pole at s = 1 , and therefore ζ ( s ) ( s 1 ) 1 is an entire function.

    Suggested by John Harper.

  • Chapter 25 Zeta and Related Functions

    A number of additions and changes have been made to the metadata to reflect new and changed references as well as to how some equations have been derived.

  • Table 22.4.3

    Originally a minus sign was missing in the entries for cd u and dc u in the second column (headed z + K + i K ). The correct entries are k 1 ns z and k sn z . Note: These entries appear online but not in the published print edition. More specifically, Table 22.4.3 in the published print edition is restricted to the three Jacobian elliptic functions sn , cn , dn , whereas Table 22.4.3 covers all 12 Jacobian elliptic functions.

    u
    z + K z + K + i K z + i K z + 2 K z + 2 K + 2 i K z + 2 i K
    cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
    dc u ns z k sn z k cd z dc z dc z dc z

    Reported 2014-02-28 by Svante Janson.

  • 23: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • B. C. Berndt (1972) On the Hurwitz zeta-function. Rocky Mountain J. Math. 2 (1), pp. 151–157.
  • M. V. Berry (1995) The Riemann-Siegel expansion for the zeta function: High orders and remainders. Proc. Roy. Soc. London Ser. A 450, pp. 439–462.
  • J. M. Borwein, D. M. Bradley, and R. E. Crandall (2000) Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 121 (1-2), pp. 247–296.
  • 24: Bibliography D
  • N. G. de Bruijn (1937) Integralen voor de ζ -functie van Riemann. Mathematica (Zutphen) B5, pp. 170–180 (Dutch).
  • T. M. Dunster (1990a) Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), pp. 995–1018.
  • T. M. Dunster (1999) Asymptotic approximations for the Jacobi and ultraspherical polynomials, and related functions. Methods Appl. Anal. 6 (3), pp. 21–56.
  • T. M. Dunster (2006) Uniform asymptotic approximations for incomplete Riemann zeta functions. J. Comput. Appl. Math. 190 (1-2), pp. 339–353.
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.
  • 25: 29.2 Differential Equations
    For sn ( z , k ) see §22.2. …
    §29.2(ii) Other Forms
    For am ( z , k ) see §22.16(i). … we have …For the Weierstrass function see §23.2(ii). …
    26: 19.25 Relations to Other Functions
    §19.25 Relations to Other Functions
    If cs 2 ( u , k ) 0 , then …where we assume 0 x 2 1 if x = sn , cn , or cd ; x 2 1 if x = ns , nc , or dc ; x real if x = cs or sc ; k x 1 if x = dn ; 1 x 1 / k if x = nd ; x 2 k 2 if x = ds ; 0 x 2 1 / k 2 if x = sd . … in which 2 ω 1 and 2 ω 3 are generators for the lattice 𝕃 , ω 2 = ω 1 ω 3 , and η j = ζ ( ω j ) (see (23.2.12)). …
    27: Bibliography K
  • A. A. Karatsuba and S. M. Voronin (1992) The Riemann Zeta-Function. de Gruyter Expositions in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin.
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • A. Khare and U. Sukhatme (2004) Connecting Jacobi elliptic functions with different modulus parameters. Pramana 63 (5), pp. 921–936.
  • K. S. Kölbig (1970) Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function. Math. Comp. 24 (111), pp. 679–696.
  • K. S. Kölbig (1972a) Complex zeros of two incomplete Riemann zeta functions. Math. Comp. 26 (118), pp. 551–565.
  • 28: Bibliography L
  • J. Letessier (1995) Co-recursive associated Jacobi polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 203–213.
  • N. Levinson (1974) More than one third of zeros of Riemann’s zeta-function are on σ = 1 2 . Advances in Math. 13 (4), pp. 383–436.
  • X. Li, X. Shi, and J. Zhang (1991) Generalized Riemann ζ -function regularization and Casimir energy for a piecewise uniform string. Phys. Rev. D 44 (2), pp. 560–562.
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • Y. L. Luke and J. Wimp (1963) Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray. Math. Comp. 17 (84), pp. 395–404.
  • 29: Bibliography H
  • J. Hadamard (1896) Sur la distribution des zéros de la fonction ζ ( s ) et ses conséquences arithmétiques. Bull. Soc. Math. France 24, pp. 199–220 (French).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • E. Hahn (1980) Asymptotik bei Jacobi-Polynomen und Jacobi-Funktionen. Math. Z. 171 (3), pp. 201–226 (German).
  • C. B. Haselgrove and J. C. P. Miller (1960) Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York.
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ ( 2 m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • 30: Bibliography I
  • J. Igusa (1972) Theta Functions. Springer-Verlag, New York.
  • E. L. Ince (1932) Tables of the elliptic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 52, pp. 355–433.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail (1986) Asymptotics of the Askey-Wilson and q -Jacobi polynomials. SIAM J. Math. Anal. 17 (6), pp. 1475–1482.
  • A. Ivić (1985) The Riemann Zeta-Function. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.