29.1 Special Notation29.3 Definitions and Basic Properties

§29.2 Differential Equations

Contents

§29.2(i) Lamé’s Equation

29.2.1\frac{{d}^{2}w}{{dz}^{2}}+(h-\nu(\nu+1)k^{2}{\mathop{\mathrm{sn}\/}\nolimits^{{2}}}\left(z,k\right))w=0,

where k and \nu are real parameters such that 0<k<1 and \nu\geq-\tfrac{1}{2}. For \mathop{\mathrm{sn}\/}\nolimits\left(z,k\right) see §22.2. This equation has regular singularities at the points 2p\!\mathop{K\/}\nolimits\!+(2q+1)i\!\mathop{{K^{{\prime}}}\/}\nolimits\!, where p,q\in\Integer, and \!\mathop{K\/}\nolimits\!, \!\mathop{{K^{{\prime}}}\/}\nolimits\! are the complete elliptic integrals of the first kind with moduli k, k^{{\prime}}(=(1-k^{2})^{{1/2}}), respectively; see §19.2(ii). In general, at each singularity each solution of (29.2.1) has a branch point (§2.7(i)). See Figure 29.2.1.

§29.2(ii) Other Forms

Next, let e_{1},e_{2},e_{3} be any real constants that satisfy e_{1}>e_{2}>e_{3} and

29.2.6
e_{1}+e_{2}+e_{3}=0,
\ifrac{(e_{2}-e_{3})}{(e_{1}-e_{3})}=k^{2}.

(These constants are not unique.) Then with

we have

29.2.9\frac{{d}^{2}w}{{d\eta}^{2}}+(g-\nu(\nu+1)\mathop{\wp\/}\nolimits\!\left(\eta\right))w=0,

and

29.2.10{\frac{{d}^{2}w}{{d\zeta}^{2}}+\frac{1}{2}\left(\frac{1}{\zeta-e_{{1}}}+\frac{1}{\zeta-e_{{2}}}+\frac{1}{\zeta-e_{{3}}}\right)\frac{dw}{d\zeta}}+\frac{g-\nu(\nu+1)\zeta}{4(\zeta-e_{{1}})(\zeta-e_{{2}})(\zeta-e_{{3}})}w=0,

where

29.2.11\zeta=\mathop{\wp\/}\nolimits\!\left(\eta;g_{2},g_{3}\right)=\mathop{\wp\/}\nolimits\!\left(\eta\right),

with

29.2.12
g_{2}=-4(e_{{2}}e_{{3}}+e_{{3}}e_{{1}}+e_{{1}}e_{{2}}),
g_{3}=4e_{{1}}e_{{2}}e_{{3}}.

For the Weierstrass function \mathop{\wp\/}\nolimits see §23.2(ii).

Equation (29.2.10) is a special case of Heun’s equation (31.2.1).