§29.2 Differential Equations
Contents
§29.2(i) Lamé’s Equation
29.2.1
where
and
are real parameters such that
and
. For
see §22.2.
This equation has regular singularities at the points
, where
, and
,
are the complete elliptic integrals of the
first kind with moduli
,
, respectively; see
§19.2(ii). In general, at each singularity each solution of
(29.2.1) has a branch point (§2.7(i)). See Figure
29.2.1.
§29.2(ii) Other Forms
Next, let
be any real constants that satisfy
and
29.2.6
(These constants are not unique.) Then with
29.2.7
29.2.8
we have
29.2.9
and
29.2.10
where
29.2.11
with
29.2.12
For the Weierstrass function
see §23.2(ii).


![\begin{picture}(10.0,8.0)(-5.0,-4.0)\put(0.0,-4.0){\line(0,1){8.0}}\put(-5.0,0.0){\line(1,0){10.0}}\put(-4.17,-3.15){$\times$}\put(-2.17,-3.15){$\times$}\put(-0.17,-3.15){$\times$}\put(1.83,-3.15){$\times$}\put(3.83,-3.15){$\times$}\put(-4.17,-1.15){$\times$}\put(-2.17,-1.15){$\times$}\put(-0.17,-1.15){$\times$}\put(1.83,-1.15){$\times$}\put(3.83,-1.15){$\times$}\put(-4.17,0.85){$\times$}\put(-2.17,0.85){$\times$}\put(-0.17,0.85){$\times$}\put(1.83,0.85){$\times$}\put(3.83,0.85){$\times$}\put(-4.17,2.85){$\times$}\put(-2.17,2.85){$\times$}\put(-0.17,2.85){$\times$}\put(1.83,2.85){$\times$}\put(3.83,2.85){$\times$}{\put(-4.0,0.0){\line(0,1){0.15}}\put(-2.0,0.0){\line(0,1){0.15}}\put(0.0,0.0){\line(0,1){0.15}}\put(2.0,0.0){\line(0,1){0.15}}\put(4.0,0.0){\line(0,1){0.15}}}{\put(0.0,-2.0){\line(1,0){0.15}}\put(0.0,2.0){\line(1,0){0.15}}}\put(0.1,0.1){0}\put(-1.5,-3.15){$-3\iunit\!\DUAL[ATOM]{\CompEllIntCK@{k}}{\mathop{{K^{{\prime}}}\/}\nolimits}\!$}\put(-1.5,-2.15){$-2\iunit\!\DUAL[ATOM]{\CompEllIntCK@{k}}{\mathop{{K^{{\prime}}}\/}\nolimits}\!$}\put(-1.3,-1.15){$-\iunit\!\DUAL[ATOM]{\CompEllIntCK@{k}}{\mathop{{K^{{\prime}}}\/}\nolimits}\!$}\put(-0.9,0.85){$\iunit\!\DUAL[ATOM]{\CompEllIntCK@{k}}{\mathop{{K^{{\prime}}}\/}\nolimits}\!$}\put(-1.1,1.85){$2\iunit\!\DUAL[ATOM]{\CompEllIntCK@{k}}{\mathop{{K^{{\prime}}}\/}\nolimits}\!$}\put(-1.1,2.85){$3\iunit\!\DUAL[ATOM]{\CompEllIntCK@{k}}{\mathop{{K^{{\prime}}}\/}\nolimits}\!$}\put(-4.6,-0.5){$-4\!\DUAL[ATOM]{\CompEllIntK@{k}}{\mathop{K\/}\nolimits}\!$}\put(-2.6,-0.5){$-2\!\DUAL[ATOM]{\CompEllIntK@{k}}{\mathop{K\/}\nolimits}\!$}\put(1.8,-0.5){$2\!\DUAL[ATOM]{\CompEllIntK@{k}}{\mathop{K\/}\nolimits}\!$}\put(3.8,-0.5){$4\!\DUAL[ATOM]{\CompEllIntK@{k}}{\mathop{K\/}\nolimits}\!$}\end{picture}](./29/2/F1.png)
