About the Project

Gauss–Laguerre formula

AdvancedHelp

(0.001 seconds)

1—10 of 12 matching pages

1: 3.5 Quadrature
GaussLaguerre Formula
Table 3.5.6: Nodes and weights for the 5-point GaussLaguerre formula.
x k w k
Table 3.5.7: Nodes and weights for the 10-point GaussLaguerre formula.
x k w k
Table 3.5.8: Nodes and weights for the 15-point GaussLaguerre formula.
x k w k
Table 3.5.9: Nodes and weights for the 20-point GaussLaguerre formula.
x k w k
2: 6.18 Methods of Computation
For example, the GaussLaguerre formula3.5(v)) can be applied to (6.2.2); see Todd (1954) and Tseng and Lee (1998). …
3: 18.5 Explicit Representations
§18.5(ii) Rodrigues Formulas
Related formula: …
Laguerre
For corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). …
Laguerre
4: Bibliography G
  • B. Gabutti and B. Minetti (1981) A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function. J. Comput. Phys. 42 (2), pp. 277–287.
  • L. Gatteschi (2002) Asymptotics and bounds for the zeros of Laguerre polynomials: A survey. J. Comput. Appl. Math. 144 (1-2), pp. 7–27.
  • C. F. Gauss (1863) Werke. Band II. pp. 436–447 (German).
  • W. Gautschi (1968) Construction of Gauss-Christoffel quadrature formulas. Math. Comp. 22, pp. 251–270.
  • H. W. Gould (1972) Explicit formulas for Bernoulli numbers. Amer. Math. Monthly 79, pp. 44–51.
  • 5: 10.74 Methods of Computation
    The power-series expansions given in §§10.2 and 10.8, together with the connection formulas of §10.4, can be used to compute the Bessel and Hankel functions when the argument x or z is sufficiently small in absolute value. … In the case of the spherical Bessel functions the explicit formulas given in §§10.49(i) and 10.49(ii) are terminating cases of the asymptotic expansions given in §§10.17(i) and 10.40(i) for the Bessel functions and modified Bessel functions. … For applications of generalized GaussLaguerre quadrature (§3.5(v)) to the evaluation of the modified Bessel functions K ν ( z ) for 0 < ν < 1 and 0 < x < see Gautschi (2002a). …
    6: 18.3 Definitions
    §18.3 Definitions
    The classical OP’s comprise the Jacobi, Laguerre and Hermite polynomials. …
  • 3.

    As given by a Rodrigues formula (18.5.5).

  • However, most of these formulas can be obtained by specialization of formulas for Jacobi polynomials, via (18.7.4)–(18.7.6). … Formula (18.3.1) can be understood as a Gauss-Chebyshev quadrature, see (3.5.22), (3.5.23). …
    7: 18.30 Associated OP’s
    where the generalized hypergeometric function F 3 4 is defined by (16.2.1). …
    §18.30(iii) Associated Laguerre Polynomials
    The recursion relation for the associated Laguerre polynomials, see (18.30.2), (18.30.3) is
    L 1 λ ( x ; c ) = 0 ,
    For Gauss’ hypergeometric function F see (15.2.1). …
    8: 18.17 Integrals
    For formulas for Jacobi and Laguerre polynomials analogous to (18.17.5) and (18.17.6), see Koornwinder (1974, 1977). … For similar formulas for ultraspherical polynomials see Durand (1975), and for Jacobi and Laguerre polynomials see Durand (1978). …
    Laguerre
    Laguerre
    Laguerre
    9: Bibliography M
  • T. Masuda, Y. Ohta, and K. Kajiwara (2002) A determinant formula for a class of rational solutions of Painlevé V equation. Nagoya Math. J. 168, pp. 1–25.
  • C. Micu and E. Papp (2005) Applying q -Laguerre polynomials to the derivation of q -deformed energies of oscillator and Coulomb systems. Romanian Reports in Physics 57 (1), pp. 25–34.
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • D. S. Moak (1984) The q -analogue of Stirling’s formula. Rocky Mountain J. Math. 14 (2), pp. 403–413.
  • 10: Bibliography T
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N. M. Temme (1990a) Asymptotic estimates for Laguerre polynomials. Z. Angew. Math. Phys. 41 (1), pp. 114–126.
  • N. M. Temme (2003) Large parameter cases of the Gauss hypergeometric function. J. Comput. Appl. Math. 153 (1-2), pp. 441–462.
  • L. N. Trefethen (2008) Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50 (1), pp. 67–87.
  • F. G. Tricomi (1949) Sul comportamento asintotico dell’ n -esimo polinomio di Laguerre nell’intorno dell’ascissa 4 n . Comment. Math. Helv. 22, pp. 150–167.