10.3 Graphics10.5 Wronskians and Cross-Products

§10.4 Connection Formulas

Other solutions of (10.2.1) include \mathop{J_{{-\nu}}\/}\nolimits\!\left(z\right), \mathop{Y_{{-\nu}}\/}\nolimits\!\left(z\right), \mathop{{H^{{(1)}}_{{-\nu}}}\/}\nolimits\!\left(z\right), and \mathop{{H^{{(2)}}_{{-\nu}}}\/}\nolimits\!\left(z\right).

10.4.1
\mathop{J_{{-n}}\/}\nolimits\!\left(z\right)=(-1)^{n}\mathop{J_{{n}}\/}\nolimits\!\left(z\right),
\mathop{Y_{{-n}}\/}\nolimits\!\left(z\right)=(-1)^{n}\mathop{Y_{{n}}\/}\nolimits\!\left(z\right),
10.4.2
\mathop{{H^{{(1)}}_{{-n}}}\/}\nolimits\!\left(z\right)=(-1)^{n}\mathop{{H^{{(1)}}_{{n}}}\/}\nolimits\!\left(z\right),
\mathop{{H^{{(2)}}_{{-n}}}\/}\nolimits\!\left(z\right)=(-1)^{n}\mathop{{H^{{(2)}}_{{n}}}\/}\nolimits\!\left(z\right).
10.4.3
\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right)=\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)+i\mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right),
\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right)=\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)-i\mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right),
10.4.4
\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)=\frac{1}{2}\left(\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right)+\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right)\right),
\mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right)=\frac{1}{2i}\left(\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right)-\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right)\right).
10.4.5\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)=\mathop{\csc\/}\nolimits(\nu\pi)\left(\mathop{Y_{{-\nu}}\/}\nolimits\!\left(z\right)-\mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right)\mathop{\cos\/}\nolimits(\nu\pi)\right).
10.4.6
\mathop{{H^{{(1)}}_{{-\nu}}}\/}\nolimits\!\left(z\right)=e^{{\nu\pi i}}\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right),
\mathop{{H^{{(2)}}_{{-\nu}}}\/}\nolimits\!\left(z\right)=e^{{-\nu\pi i}}\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right).
10.4.7\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right)=i\mathop{\csc\/}\nolimits(\nu\pi)\left(e^{{-\nu\pi i}}\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)-\mathop{J_{{-\nu}}\/}\nolimits\!\left(z\right)\right)=\mathop{\csc\/}\nolimits(\nu\pi)\left(\mathop{Y_{{-\nu}}\/}\nolimits\!\left(z\right)-e^{{-\nu\pi i}}\mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right)\right),
10.4.8\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right)=i\mathop{\csc\/}\nolimits(\nu\pi)\left(\mathop{J_{{-\nu}}\/}\nolimits\!\left(z\right)-e^{{\nu\pi i}}\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)\right)=\mathop{\csc\/}\nolimits(\nu\pi)\left(\mathop{Y_{{-\nu}}\/}\nolimits\!\left(z\right)-e^{{\nu\pi i}}\mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right)\right).

In (10.4.5), (10.4.7), and (10.4.8) limiting values are taken when \nu=n; compare (10.2.3) and (10.2.4).

See also §10.11.