10.2 Definitions10.4 Connection Formulas

§10.3 Graphics

Contents

§10.3(i) Real Order and Variable

For the modulus and phase functions \mathop{M_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{\theta _{{\nu}}\/}\nolimits\!\left(x\right), \mathop{N_{{\nu}}\/}\nolimits\!\left(x\right), and \mathop{\phi _{{\nu}}\/}\nolimits\!\left(x\right) see §10.18.

§10.3(ii) Real Order, Complex Variable

In the graphics shown in this subsection, height corresponds to the absolute value of the function and color to the phase. See also p. About Color Map.

Figure 10.3.10: \mathop{{H^{{(1)}}_{{0}}}\/}\nolimits\!\left(x+iy\right), -10\leq x\leq 5,-2.8\leq y\leq 4. Principal value. There is a cut along the negative real axis. Magnify
Figure 10.3.12: \mathop{{H^{{(1)}}_{{1}}}\/}\nolimits\!\left(x+iy\right), -10\leq x\leq 5,-2.8\leq y\leq 4. Principal value. There is a cut along the negative real axis. Magnify
Figure 10.3.14: \mathop{{H^{{(1)}}_{{5}}}\/}\nolimits\!\left(x+iy\right), -20\leq x\leq 10,-4\leq y\leq 4. Principal value. There is a cut along the negative real axis. Magnify
Figure 10.3.15: \mathop{J_{{5.5}}\/}\nolimits\!\left(x+iy\right), -10\leq x\leq 10,-4\leq y\leq 4. Principal value. There is a cut along the negative real axis. Magnify
Figure 10.3.16: \mathop{{H^{{(1)}}_{{5.5}}}\/}\nolimits\!\left(x+iy\right), -20\leq x\leq 10,-4\leq y\leq 4. Principal value. There is a cut along the negative real axis. Magnify

§10.3(iii) Imaginary Order, Real Variable

For the notation see §10.24.

Choose format for 3D interactive visualization
Format
 
Please see Visualization Help for details, and Customize to change your choice, or for other customizations.