10.6 Recurrence Relations and Derivatives10.8 Power Series

§10.7 Limiting Forms

Contents

§10.7(i) z\to 0

When \nu is fixed and z\to 0,

10.7.1
\mathop{J_{{0}}\/}\nolimits\!\left(z\right)\to 1,
\mathop{Y_{{0}}\/}\nolimits\!\left(z\right)\sim(2/\pi)\mathop{\ln\/}\nolimits z,
10.7.2\mathop{{H^{{(1)}}_{{0}}}\/}\nolimits\!\left(z\right)\sim-\mathop{{H^{{(2)}}_{{0}}}\/}\nolimits\!\left(z\right)\sim(2i/\pi)\mathop{\ln\/}\nolimits z,
10.7.3\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)\sim(\tfrac{1}{2}z)^{\nu}/\mathop{\Gamma\/}\nolimits\!\left(\nu+1\right),\nu\neq-1,-2,-3,\dots,
10.7.6\mathop{Y_{{i\nu}}\/}\nolimits\!\left(z\right)=\frac{i\mathop{\mathrm{csch}\/}\nolimits(\nu\pi)}{\mathop{\Gamma\/}\nolimits\!\left(1-i\nu\right)}(\tfrac{1}{2}z)^{{-i\nu}}-\frac{i\mathop{\coth\/}\nolimits(\nu\pi)}{\mathop{\Gamma\/}\nolimits\!\left(1+i\nu\right)}(\tfrac{1}{2}z)^{{i\nu}}+e^{{|\nu\mathop{\mathrm{ph}\/}\nolimits z|}}\mathop{o\/}\nolimits\!\left(1\right),\nu\in\Real and \nu\neq 0.

See also §10.24 when z=x (>0).

10.7.7\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right)\sim-\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right)\sim-(i/\pi)\mathop{\Gamma\/}\nolimits\!\left(\nu\right)(\tfrac{1}{2}z)^{{-\nu}},\realpart{\nu}>0.

For \mathop{{H^{{(1)}}_{{-\nu}}}\/}\nolimits\!\left(z\right) and \mathop{{H^{{(2)}}_{{-\nu}}}\/}\nolimits\!\left(z\right) when \realpart{\nu}>0 combine (10.4.6) and (10.7.7). For \mathop{{H^{{(1)}}_{{i\nu}}}\/}\nolimits\!\left(z\right) and \mathop{{H^{{(2)}}_{{i\nu}}}\/}\nolimits\!\left(z\right) when \nu\in\Real and \nu\neq 0 combine (10.4.3), (10.7.3), and (10.7.6).