10.5 Wronskians and Cross-Products10.7 Limiting Forms

§10.6 Recurrence Relations and Derivatives

Contents

§10.6(i) Recurrence Relations

If f_{\nu}(z)=z^{p}\mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(\lambda z^{q}\right), where p,q, and \lambda (\neq 0) are real or complex constants, then

10.6.4
f_{{\nu-1}}(z)+f_{{\nu+1}}(z)=(2\nu/\lambda)z^{{-q}}f_{\nu}(z),
(p+\nu q)f_{{\nu-1}}(z)+(p-\nu q)f_{{\nu+1}}(z)=(2\nu/\lambda)z^{{1-q}}f_{{\nu}}^{{\prime}}(z).
10.6.5
zf_{\nu}^{{\prime}}(z)=\lambda qz^{q}f_{{\nu-1}}(z)+(p-\nu q)f_{{\nu}}(z),
zf_{\nu}^{{\prime}}(z)=-\lambda qz^{q}f_{{\nu+1}}(z)+(p+\nu q)f_{\nu}(z).

§10.6(ii) Derivatives

§10.6(iii) Cross-Products

Let

10.6.8
p_{\nu}=\mathop{J_{{\nu}}\/}\nolimits\!\left(a\right)\mathop{Y_{{\nu}}\/}\nolimits\!\left(b\right)-\mathop{J_{{\nu}}\/}\nolimits\!\left(b\right)\mathop{Y_{{\nu}}\/}\nolimits\!\left(a\right),
q_{\nu}=\mathop{J_{{\nu}}\/}\nolimits\!\left(a\right){\mathop{Y_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(b\right)-{\mathop{J_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(b\right)\mathop{Y_{{\nu}}\/}\nolimits\!\left(a\right),
r_{\nu}={\mathop{J_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(a\right)\mathop{Y_{{\nu}}\/}\nolimits\!\left(b\right)-\mathop{J_{{\nu}}\/}\nolimits\!\left(b\right){\mathop{Y_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(a\right),
s_{\nu}={\mathop{J_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(a\right){\mathop{Y_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(b\right)-{\mathop{J_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(b\right){\mathop{Y_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(a\right),

where a and b are independent of \nu. Then

10.6.9
p_{{\nu+1}}-p_{{\nu-1}}=-\frac{2\nu}{a}q_{\nu}-\frac{2\nu}{b}r_{\nu},
q_{{\nu+1}}+r_{\nu}=\frac{\nu}{a}p_{\nu}-\frac{\nu+1}{b}p_{{\nu+1}},
r_{{\nu+1}}+q_{\nu}=\frac{\nu}{b}p_{\nu}-\frac{\nu+1}{a}p_{{\nu+1}},
s_{\nu}=\tfrac{1}{2}p_{{\nu+1}}+\tfrac{1}{2}p_{{\nu-1}}-\frac{\nu^{2}}{ab}p_{\nu},

and

10.6.10p_{\nu}s_{\nu}-q_{\nu}r_{\nu}=4/(\pi^{2}ab).