About the Project

transcendental equations

AdvancedHelp

(0.001 seconds)

1—10 of 12 matching pages

1: 2.2 Transcendental Equations
§2.2 Transcendental Equations
where F 0 = f 0 and s F s ( s 1 ) is the coefficient of x 1 in the asymptotic expansion of ( f ( x ) ) s (Lagrange’s formula for the reversion of series). …
2: 30.3 Eigenvalues
§30.3(iii) Transcendental Equation
3: Bibliography F
  • F. N. Fritsch, R. E. Shafer, and W. P. Crowley (1973) Solution of the transcendental equation w e w = x . Comm. ACM 16 (2), pp. 123–124.
  • 4: Bibliography M
  • T. Masuda (2004) Classical transcendental solutions of the Painlevé equations and their degeneration. Tohoku Math. J. (2) 56 (4), pp. 467–490.
  • 5: Bibliography B
  • A. W. Babister (1967) Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations. The Macmillan Co., New York.
  • 6: 32.2 Differential Equations
    §32.2 Differential Equations
    The six Painlevé equations P I P VI  are as follows: … For arbitrary values of the parameters α , β , γ , and δ , the general solutions of P I P VI  are transcendental, that is, they cannot be expressed in closed-form elementary functions. …
    §32.2(ii) Renormalizations
    7: Bibliography G
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • W. Gautschi (1997b) The Computation of Special Functions by Linear Difference Equations. In Advances in Difference Equations (Veszprém, 1995), S. Elaydi, I. Győri, and G. Ladas (Eds.), pp. 213–243.
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • V. I. Gromak and N. A. Lukaševič (1982) Special classes of solutions of Painlevé equations. Differ. Uravn. 18 (3), pp. 419–429 (Russian).
  • V. I. Gromak (1975) Theory of Painlevé’s equations. Differ. Uravn. 11 (11), pp. 373–376 (Russian).
  • 8: Bibliography E
  • A. Erdélyi (1942a) Integral equations for Heun functions. Quart. J. Math., Oxford Ser. 13, pp. 107–112.
  • A. Erdélyi (1942b) The Fuchsian equation of second order with four singularities. Duke Math. J. 9 (1), pp. 48–58.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1953a) Higher Transcendental Functions. Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1953b) Higher Transcendental Functions. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1955) Higher Transcendental Functions. Vol. III. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • 9: 32.10 Special Function Solutions
    §32.10(ii) Second Painlevé Equation
    §32.10(iii) Third Painlevé Equation
    §32.10(iv) Fourth Painlevé Equation
    The solution (32.10.34) is an essentially transcendental function of both constants of integration since P VI  with α = β = γ = 0 and δ = 1 2 does not admit an algebraic first integral of the form P ( z , w , w , C ) = 0 , with C a constant. …
    10: 19.20 Special Cases
     Schneider that this is a transcendental number. …
    19.20.5 2 R G ( x , y , y ) = y R C ( x , y ) + x .
    19.20.7 R J ( x , y , z , p ) + , p 0 + or 0 ; x , y , z > 0 .
     Schneider that this is a transcendental number. …
    19.20.25 R c ( 𝐛 ; 𝐳 ) = j = 1 n z j b j ,