About the Project

unit

AdvancedHelp

(0.001 seconds)

11—20 of 404 matching pages

11: 7.4 Symmetry
C ( i z ) = i C ( z ) ,
S ( i z ) = i S ( z ) .
f ( i z ) = ( 1 / 2 ) e 1 4 π i 1 2 π i z 2 i f ( z ) ,
g ( i z ) = ( 1 / 2 ) e 1 4 π i 1 2 π i z 2 + i g ( z ) .
12: 9.3 Graphics
See accompanying text
Figure 9.3.3: Ai ( x + i y ) . Magnify 3D Help
See accompanying text
Figure 9.3.4: Bi ( x + i y ) . Magnify 3D Help
See accompanying text
Figure 9.3.5: Ai ( x + i y ) . Magnify 3D Help
See accompanying text
Figure 9.3.6: Bi ( x + i y ) . Magnify 3D Help
13: 14.22 Graphics
See accompanying text
Figure 14.22.1: P 1 / 2 0 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.2: P 1 / 2 1 / 2 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.3: P 1 / 2 1 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.4: 𝑸 0 0 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
14: 29.10 Lamé Functions with Imaginary Periods
𝐸𝑐 ν 2 m ( i ( z K i K ) , k 2 ) ,
𝐸𝑐 ν 2 m + 1 ( i ( z K i K ) , k 2 ) ,
𝐸𝑠 ν 2 m + 1 ( i ( z K i K ) , k 2 ) ,
The first and the fourth functions have period 2 i K ; the second and the third have period 4 i K . …
15: 32 Painlevé Transcendents
16: 10.34 Analytic Continuation
10.34.1 I ν ( z e m π i ) = e m ν π i I ν ( z ) ,
10.34.2 K ν ( z e m π i ) = e m ν π i K ν ( z ) π i sin ( m ν π ) csc ( ν π ) I ν ( z ) .
10.34.3 I ν ( z e m π i ) = ( i / π ) ( ± e m ν π i K ν ( z e ± π i ) e ( m 1 ) ν π i K ν ( z ) ) ,
10.34.4 K ν ( z e m π i ) = csc ( ν π ) ( ± sin ( m ν π ) K ν ( z e ± π i ) sin ( ( m 1 ) ν π ) K ν ( z ) ) .
10.34.5 K n ( z e m π i ) = ( 1 ) m n K n ( z ) + ( 1 ) n ( m 1 ) 1 m π i I n ( z ) ,
17: 29.14 Orthogonality
29.14.3 w ( s , t ) = sn 2 ( K + i t , k ) sn 2 ( s , k ) .
29.14.4 𝑠𝐸 2 n + 1 m ( s , k 2 ) 𝑠𝐸 2 n + 1 m ( K + i t , k 2 ) ,
29.14.5 𝑐𝐸 2 n + 1 m ( s , k 2 ) 𝑐𝐸 2 n + 1 m ( K + i t , k 2 ) ,
29.14.6 𝑑𝐸 2 n + 1 m ( s , k 2 ) 𝑑𝐸 2 n + 1 m ( K + i t , k 2 ) ,
29.14.7 𝑠𝑐𝐸 2 n + 2 m ( s , k 2 ) 𝑠𝑐𝐸 2 n + 2 m ( K + i t , k 2 ) ,
18: 4.4 Special Values and Limits
4.4.2 ln ( 1 ± i 0 ) = ± π i ,
4.4.3 ln ( ± i ) = ± 1 2 π i .
4.4.5 e ± π i = 1 ,
4.4.6 e ± π i / 2 = ± i ,
4.4.8 e ± π i / 3 = 1 2 ± i 3 2 ,
19: 7.5 Interrelations
7.5.2 C ( z ) + i S ( z ) = 1 2 ( 1 + i ) ( z ) .
7.5.7 ζ = 1 2 π ( 1 i ) z ,
7.5.8 C ( z ) ± i S ( z ) = 1 2 ( 1 ± i ) erf ζ .
7.5.10 g ( z ) ± i f ( z ) = 1 2 ( 1 ± i ) e ζ 2 erfc ζ .
20: 33.7 Integral Representations
33.7.1 F ( η , ρ ) = ρ + 1 2 e i ρ ( π η / 2 ) | Γ ( + 1 + i η ) | 0 1 e 2 i ρ t t + i η ( 1 t ) i η d t ,
33.7.2 H ( η , ρ ) = e i ρ ρ ( 2 + 1 ) ! C ( η ) 0 e t t i η ( t + 2 i ρ ) + i η d t ,
33.7.3 H ( η , ρ ) = i e π η ρ + 1 ( 2 + 1 ) ! C ( η ) 0 ( exp ( i ( ρ tanh t 2 η t ) ) ( cosh t ) 2 + 2 + i ( 1 + t 2 ) exp ( ρ t + 2 η arctan t ) ) d t ,
33.7.4 H + ( η , ρ ) = i e π η ρ + 1 ( 2 + 1 ) ! C ( η ) 1 i e i ρ t ( 1 t ) i η ( 1 + t ) + i η d t .