About the Project

logarithmic integral

AdvancedHelp

(0.009 seconds)

21—30 of 218 matching pages

21: 6 Exponential, Logarithmic, Sine, and
Cosine Integrals
Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals
22: 8.20 Asymptotic Expansions of E p ( z )
8.20.1 E p ( z ) = e z z ( k = 0 n 1 ( 1 ) k ( p ) k z k + ( 1 ) n ( p ) n e z z n 1 E n + p ( z ) ) , n = 1 , 2 , 3 , .
8.20.3 E p ( z ) ± 2 π i Γ ( p ) e p π i z p 1 + e z z k = 0 ( 1 ) k ( p ) k z k , 1 2 π + δ ± ph z 7 2 π δ ,
8.20.6 E p ( λ p ) e λ p ( λ + 1 ) p k = 0 A k ( λ ) ( λ + 1 ) 2 k 1 p k ,
23: 6.10 Other Series Expansions
6.10.1 E 1 ( z ) = e z ( c 0 z + c 1 z ( z + 1 ) + 2 ! c 2 z ( z + 1 ) ( z + 2 ) + 3 ! c 3 z ( z + 1 ) ( z + 2 ) ( z + 3 ) + ) , z > 0 ,
For a more general result (incomplete gamma function), and also for a result for the logarithmic integral, see Nielsen (1906a, p. 283: Formula (3) is incorrect). …
6.10.6 Ei ( x ) = γ + ln | x | + n = 0 ( 1 ) n ( x a n ) ( 𝗂 n ( 1 ) ( 1 2 x ) ) 2 , x 0 ,
6.10.8 Ein ( z ) = z e z / 2 ( 𝗂 0 ( 1 ) ( 1 2 z ) + n = 1 2 n + 1 n ( n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) ) .
24: 12.12 Integrals
12.12.1 0 e 1 4 t 2 t μ 1 U ( a , t ) d t = π 2 1 2 ( μ + a + 1 2 ) Γ ( μ ) Γ ( 1 2 ( μ + a + 3 2 ) ) , μ > 0 ,
12.12.2 0 e 3 4 t 2 t a 3 2 U ( a , t ) d t = 2 1 4 + 1 2 a Γ ( a 1 2 ) cos ( ( 1 4 a + 1 8 ) π ) , a < 1 2 ,
12.12.3 0 e 1 4 t 2 t a 1 2 ( x 2 + t 2 ) 1 U ( a , t ) d t = π / 2 Γ ( 1 2 a ) x a 3 2 e 1 4 x 2 U ( a , x ) , a < 1 2 , x > 0 .
12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
25: 11.7 Integrals and Sums
11.7.14 0 e a t 𝐇 1 ( t ) d t = 2 π a 2 a π 1 + a 2 ln ( 1 + 1 + a 2 a ) ,
11.7.15 0 e a t 𝐋 0 ( t ) d t = 2 π a 2 1 arcsin ( 1 a ) ,
26: 7.2 Definitions
7.2.1 erf z = 2 π 0 z e t 2 d t ,
7.2.2 erfc z = 2 π z e t 2 d t = 1 erf z ,
7.2.5 F ( z ) = e z 2 0 z e t 2 d t .
7.2.6 ( z ) = z e 1 2 π i t 2 d t ,
7.2.12 G ( z ) = 0 e t 2 t + z d t , | ph z | < π .
27: 13.16 Integral Representations
13.16.1 M κ , μ ( z ) = Γ ( 1 + 2 μ ) z μ + 1 2 2 2 μ Γ ( 1 2 + μ κ ) Γ ( 1 2 + μ + κ ) 1 1 e 1 2 z t ( 1 + t ) μ 1 2 κ ( 1 t ) μ 1 2 + κ d t , μ + 1 2 > | κ | ,
13.16.2 M κ , μ ( z ) = Γ ( 1 + 2 μ ) z λ Γ ( 1 + 2 μ 2 λ ) Γ ( 2 λ ) 0 1 M κ λ , μ λ ( z t ) e 1 2 z ( t 1 ) t μ λ 1 2 ( 1 t ) 2 λ 1 d t , μ + 1 2 > λ > 0 ,
13.16.3 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e 1 2 z Γ ( 1 2 + μ + κ ) 0 e t t κ 1 2 J 2 μ ( 2 z t ) d t , ( κ + μ ) + 1 2 > 0 ,
13.16.4 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e 1 2 z Γ ( 1 2 + μ κ ) 0 e t t κ 1 2 I 2 μ ( 2 z t ) d t , ( κ μ ) 1 2 < 0 .
13.16.5 W κ , μ ( z ) = z μ + 1 2 2 2 μ Γ ( 1 2 + μ κ ) 1 e 1 2 z t ( t 1 ) μ 1 2 κ ( t + 1 ) μ 1 2 + κ d t , μ + 1 2 > κ , | ph z | < 1 2 π ,
28: 6.11 Relations to Other Functions
6.11.2 E 1 ( z ) = e z U ( 1 , 1 , z ) ,
29: 4.26 Integrals
4.26.3 tan x d x = ln ( cos x ) , 1 2 π < x < 1 2 π .
4.26.7 e a x sin ( b x ) d x = e a x a 2 + b 2 ( a sin ( b x ) b cos ( b x ) ) ,
4.26.8 e a x cos ( b x ) d x = e a x a 2 + b 2 ( a cos ( b x ) + b sin ( b x ) ) .
30: 7.8 Inequalities
7.8.1 𝖬 ( x ) = x e t 2 d t e x 2 = e x 2 x e t 2 d t .
7.8.6 0 x e a t 2 d t < 1 3 a x ( 2 e a x 2 + a x 2 2 ) , a , x > 0 .
7.8.7 sinh x 2 x < e x 2 F ( x ) = 0 x e t 2 d t < e x 2 1 x , x > 0 .