About the Project

big q-Jacobi polynomials

AdvancedHelp

(0.003 seconds)

11—20 of 314 matching pages

11: 18.35 Pollaczek Polynomials
§18.35 Pollaczek Polynomials
There are 3 types of Pollaczek polynomials: … For the monic polynomials
12: 24.17 Mathematical Applications
§24.17 Mathematical Applications
Let 𝒮 n denote the class of functions that have n 1 continuous derivatives on and are polynomials of degree at most n in each interval ( k , k + 1 ) , k . …
§24.17(iii) Number Theory
Bernoulli and Euler numbers and polynomials occur in: number theory via (24.4.7), (24.4.8), and other identities involving sums of powers; the Riemann zeta function and L -series (§25.15, Apostol (1976), and Ireland and Rosen (1990)); arithmetic of cyclotomic fields and the classical theory of Fermat’s last theorem (Ribenboim (1979) and Washington (1997)); p -adic analysis (Koblitz (1984, Chapter 2)).
13: 2.10 Sums and Sequences
As in §24.2, let B n and B n ( x ) denote the n th Bernoulli number and polynomial, respectively, and B ~ n ( x ) the n th Bernoulli periodic function B n ( x x ) . … From §24.12(i), (24.2.2), and (24.4.27), B ~ 2 m ( x ) B 2 m is of constant sign ( 1 ) m . …
  • (b´)

    On the circle | z | = r , the function f ( z ) g ( z ) has a finite number of singularities, and at each singularity z j , say,

    2.10.30 f ( z ) g ( z ) = O ( ( z z j ) σ j 1 ) , z z j ,

    where σ j is a positive constant.

  • Example
    Let α be a constant in ( 0 , 2 π ) and P n denote the Legendre polynomial of degree n . …
    14: 10.41 Asymptotic Expansions for Large Order
    Also, U k ( p ) and V k ( p ) are polynomials in p of degree 3 k , given by U 0 ( p ) = V 0 ( p ) = 1 , and …
    10.41.12 I ν ( ν z ) = e ν η ( 2 π ν ) 1 2 ( 1 + z 2 ) 1 4 ( k = 0 1 U k ( p ) ν k + O ( 1 z ) ) , | ph z | 1 2 π δ ,
    10.41.13 K ν ( ν z ) = ( π 2 ν ) 1 2 e ν η ( 1 + z 2 ) 1 4 ( k = 0 1 ( 1 ) k U k ( p ) ν k + O ( 1 z ) ) , | ph z | 3 2 π δ .
    10.41.14 J ν ( ν z ) = ( 4 ζ 1 z 2 ) 1 4 ( Ai ( ν 2 3 ζ ) ν 1 3 ( k = 0 A k ( ζ ) ν 2 k + O ( 1 ζ 3 + 3 ) ) + Ai ( ν 2 3 ζ ) ν 5 3 ( k = 0 1 B k ( ζ ) ν 2 k + O ( 1 ζ 3 + 1 ) ) ) ,
    10.41.15 Y ν ( ν z ) = ( 4 ζ 1 z 2 ) 1 4 ( Bi ( ν 2 3 ζ ) ν 1 3 ( k = 0 A k ( ζ ) ν 2 k + O ( 1 ζ 3 + 3 ) ) + Bi ( ν 2 3 ζ ) ν 5 3 ( k = 0 1 B k ( ζ ) ν 2 k + O ( 1 ζ 3 + 1 ) ) ) ,
    15: 13.2 Definitions and Basic Properties
    When a = n , n = 0 , 1 , 2 , , 𝐌 ( a , b , z ) is a polynomial in z of degree not exceeding n ; this is also true of M ( a , b , z ) provided that b is not a nonpositive integer. … When a = m , m = 0 , 1 , 2 , , U ( a , b , z ) is a polynomial in z of degree m : … Except when a = 0 , 1 , (polynomial cases), …
    16: 22.10 Maclaurin Series
    22.10.1 sn ( z , k ) = z ( 1 + k 2 ) z 3 3 ! + ( 1 + 14 k 2 + k 4 ) z 5 5 ! ( 1 + 135 k 2 + 135 k 4 + k 6 ) z 7 7 ! + O ( z 9 ) ,
    22.10.2 cn ( z , k ) = 1 z 2 2 ! + ( 1 + 4 k 2 ) z 4 4 ! ( 1 + 44 k 2 + 16 k 4 ) z 6 6 ! + O ( z 8 ) ,
    22.10.3 dn ( z , k ) = 1 k 2 z 2 2 ! + k 2 ( 4 + k 2 ) z 4 4 ! k 2 ( 16 + 44 k 2 + k 4 ) z 6 6 ! + O ( z 8 ) .
    22.10.4 sn ( z , k ) = sin z k 2 4 ( z sin z cos z ) cos z + O ( k 4 ) ,
    22.10.6 dn ( z , k ) = 1 k 2 2 sin 2 z + O ( k 4 ) ,
    17: 15.12 Asymptotic Approximations
    15.12.5 𝐅 ( a + λ , b λ c ; 1 2 1 2 z ) = 2 ( a + b 1 ) / 2 ( z + 1 ) ( c a b 1 ) / 2 ( z 1 ) c / 2 ζ sinh ζ ( λ + 1 2 a 1 2 b ) 1 c ( I c 1 ( ( λ + 1 2 a 1 2 b ) ζ ) ( 1 + O ( λ 2 ) ) + I c 2 ( ( λ + 1 2 a 1 2 b ) ζ ) 2 λ + a b ( ( c 1 2 ) ( c 3 2 ) ( 1 ζ coth ζ ) + 1 2 ( 2 c a b 1 ) ( a + b 1 ) tanh ( 1 2 ζ ) + O ( λ 2 ) ) ) ,
    See also Dunster (1999) where the asymptotics of Jacobi polynomials is described; compare (15.9.1). …
    15.12.7 F ( a , b λ c + λ ; z ) = 2 b c + ( 1 / 2 ) ( z + 1 2 z ) λ ( λ a / 2 U ( a 1 2 , α λ ) ( ( 1 + z ) c a b z 1 c ( α z 1 ) 1 a + O ( λ 1 ) ) + λ ( a 1 ) / 2 α U ( a 3 2 , α λ ) ( ( 1 + z ) c a b z 1 c ( α z 1 ) 1 a 2 c b ( 1 / 2 ) ( α z 1 ) a + O ( λ 1 ) ) ) ,
    15.12.9 ( z + 1 ) 3 λ / 2 ( 2 λ ) c 1 𝐅 ( a + λ , b + 2 λ c ; z ) = λ 1 / 3 ( e π i ( a c + λ + ( 1 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) + e π i ( c a λ ( 1 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) ) ( a 0 ( ζ ) + O ( λ 1 ) ) + λ 2 / 3 ( e π i ( a c + λ + ( 2 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) + e π i ( c a λ ( 2 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) ) ( a 1 ( ζ ) + O ( λ 1 ) ) ,
    18: 14.15 Uniform Asymptotic Approximations
    14.15.1 𝖯 ν μ ( ± x ) = ( 1 x 1 ± x ) μ / 2 ( j = 0 J 1 ( ν + 1 ) j ( ν ) j j ! Γ ( j + 1 + μ ) ( 1 x 2 ) j + O ( 1 Γ ( J + 1 + μ ) ) )
    14.15.3 𝑸 ν μ ( x ) = 1 μ ν + ( 1 / 2 ) ( π u 2 ) 1 / 2 I ν + 1 2 ( μ u ) ( 1 + O ( 1 μ ) ) ,
    See also Olver (1997b, pp. 311–313) and §18.15(iii) for a generalized asymptotic expansion in terms of elementary functions for Legendre polynomials P n ( cos θ ) as n with θ fixed. …
    14.15.17 P ν μ ( x ) = β ( α 2 y x 2 1 + α 2 ) 1 / 4 I μ ( ( ν + 1 2 ) | y | 1 / 2 ) ( 1 + O ( 1 ν ) ) ,
    19: 3.5 Quadrature
    Gauss–Legendre Formula
    The p n ( x ) are the monic Hermite polynomials H n ( x ) 18.3). … are related to Bessel polynomials (§§10.49(ii) and 18.34). … … We choose s = 1 so that f ( ζ ) = O ( 1 ) at infinity. …
    20: 29.7 Asymptotic Expansions
    29.7.5 b ν m + 1 ( k 2 ) a ν m ( k 2 ) = O ( ν m + 3 2 ( 1 k 1 + k ) ν ) , ν .
    Müller (1966a, b) found three formal asymptotic expansions for a fundamental system of solutions of (29.2.1) (and (29.11.1)) as ν , one in terms of Jacobian elliptic functions and two in terms of Hermite polynomials. …