2.1 Definitions and Elementary Properties2.3 Integrals of a Real Variable

§2.2 Transcendental Equations

Let f(x) be continuous and strictly increasing when a<x<\infty and

2.2.1f(x)\sim x,x\to\infty.

Then for y>f(a) the equation f(x)=y has a unique root x=x(y) in (a,\infty), and

2.2.2x(y)\sim y,y\to\infty.

Example

2.2.3t^{2}-\mathop{\ln\/}\nolimits t=y.

With x=t^{2}, f(x)=x-\frac{1}{2}\mathop{\ln\/}\nolimits x. We may take a=\frac{1}{2}. From (2.2.2)

2.2.4t=y^{{\frac{1}{2}}}\left(1+\mathop{o\/}\nolimits\!\left(1\right)\right),y\to\infty.

Higher approximations are obtainable by successive resubstitutions. For example

2.2.5t^{2}=y+\mathop{\ln\/}\nolimits t=y+\tfrac{1}{2}\mathop{\ln\/}\nolimits y+\mathop{o\/}\nolimits\!\left(1\right),

and hence

2.2.6t=y^{{\frac{1}{2}}}\left(1+\tfrac{1}{4}y^{{-1}}\mathop{\ln\/}\nolimits y+\mathop{o\/}\nolimits\!\left(y^{{-1}}\right)\right),y\to\infty.

An important case is the reversion of asymptotic expansions for zeros of special functions. In place of (2.2.1) assume that

2.2.7f(x)\sim x+f_{0}+f_{1}x^{{-1}}+f_{2}x^{{-2}}+\cdots,x\to\infty.

Then

2.2.8x\sim y-F_{0}-F_{1}y^{{-1}}-F_{2}y^{{-2}}-\cdots,y\to\infty,

where F_{0}=f_{0} and sF_{s} (s\geq 1) is the coefficient of x^{{-1}} in the asymptotic expansion of (f(x))^{s} (Lagrange’s formula for the reversion of series). Conditions for the validity of the reversion process in \Complex are derived in Olver (1997b, pp. 14–16). Applications to real and complex zeros of Airy functions are given in Fabijonas and Olver (1999). For other examples see de Bruijn (1961, Chapter 2).