About the Project

of type 3

AdvancedHelp

(0.002 seconds)

11—20 of 71 matching pages

11: Bibliography
β–Ί
  • Y. Ameur and J. Cronvall (2023) SzegΕ‘ Type Asymptotics for the Reproducing Kernel in Spaces of Full-Plane Weighted Polynomials. Comm. Math. Phys. 398 (3), pp. 1291–1348.
  • 12: Bibliography T
    β–Ί
  • K. Takasaki (2001) Painlevé-Calogero correspondence revisited. J. Math. Phys. 42 (3), pp. 1443–1473.
  • β–Ί
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • β–Ί
  • N. M. Temme (1996a) Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters. Methods Appl. Anal. 3 (3), pp. 335–344.
  • β–Ί
  • N. M. Temme (1997) Numerical algorithms for uniform Airy-type asymptotic expansions. Numer. Algorithms 15 (2), pp. 207–225.
  • β–Ί
  • P. Terwilliger (2013) The universal Askey-Wilson algebra and DAHA of type ( C 1 , C 1 ) . SIGMA 9, pp. Paper 047, 40 pp..
  • 13: 26.13 Permutations: Cycle Notation
    β–ΊA permutation with cycle type ( a 1 , a 2 , , a n ) can be written as a product of a 2 + 2 ⁒ a 3 + β‹― + ( n 1 ) ⁒ a n = n ( a 1 + a 2 + β‹― + a n ) transpositions, and no fewer. …
    14: Bibliography O
    β–Ί
  • K. Okamoto (1981) On the Ο„ -function of the Painlevé equations. Phys. D 2 (3), pp. 525–535.
  • β–Ί
  • S. Okui (1974) Complete elliptic integrals resulting from infinite integrals of Bessel functions. J. Res. Nat. Bur. Standards Sect. B 78B (3), pp. 113–135.
  • β–Ί
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • β–Ί
  • A. B. Olde Daalhuis and F. W. J. Olver (1998) On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40 (3), pp. 463–495.
  • β–Ί
  • A. B. Olde Daalhuis and N. M. Temme (1994) Uniform Airy-type expansions of integrals. SIAM J. Math. Anal. 25 (2), pp. 304–321.
  • 15: Bibliography S
    β–Ί
  • K. Schulten and R. G. Gordon (1976) Recursive evaluation of 3 ⁒ j - and 6 ⁒ j - coefficients. Comput. Phys. Comm. 11 (2), pp. 269–278.
  • β–Ί
  • J. Segura (2011) Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374 (2), pp. 516–528.
  • β–Ί
  • J. Shapiro (1970) Arbitrary 3 ⁒ n j symbols for SU ⁒ ( 2 ) . Comput. Phys. Comm. 1 (3), pp. 207–215.
  • β–Ί
  • I. M. Sheffer (1939) Some properties of polynomial sets of type zero. Duke Math. J. 5, pp. 590–622.
  • β–Ί
  • H. Skovgaard (1954) On inequalities of the Turán type. Math. Scand. 2, pp. 65–73.
  • 16: 18.38 Mathematical Applications
    β–Ί
    3 ⁒ j and 6 ⁒ j Symbols
    β–Ί
    Dunkl Type Operators and Nonsymmetric Orthogonal Polynomials
    β–ΊAlgebraic structures were built of which special representations involve Dunkl type operators. …Eigenvalue equations involving Dunkl type operators have as eigenfunctions nonsymmetric analogues of multivariable special functions associated with root systems. … β–ΊDunkl type operators and nonsymmetric polynomials have been associated with various other families in the Askey scheme and q -Askey scheme, in particular with Wilson polynomials, see Groenevelt (2007), and with Jacobi polynomials, see Koornwinder and Bouzeffour (2011, §7). …
    17: 27.14 Unrestricted Partitions
    β–ΊFor example, p ⁑ ( 5 ) = 7 because there are exactly seven partitions of 5 : 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 . … β–Ί
    27.14.5 Ο‰ ⁑ ( ± k ) = ( 3 ⁒ k 2 βˆ“ k ) / 2 , k = 1 , 2 , 3 , .
    β–Ίwhere K = Ο€ ⁒ 2 / 3 (Hardy and Ramanujan (1918)). … β–ΊAfter decades of nearly fruitless searching for further congruences of this type, it was believed that no others existed, until it was shown in Ono (2000) that there are infinitely many. Ono proved that for every prime q > 3 there are integers a and b such that p ⁑ ( a ⁒ n + b ) 0 ( mod q ) for all n . …
    18: 12.12 Integrals
    β–Ί
    12.12.1 0 e 1 4 ⁒ t 2 ⁒ t ΞΌ 1 ⁒ U ⁑ ( a , t ) ⁒ d t = Ο€ ⁒ 2 1 2 ⁒ ( ΞΌ + a + 1 2 ) ⁒ Ξ“ ⁑ ( ΞΌ ) Ξ“ ⁑ ( 1 2 ⁒ ( ΞΌ + a + 3 2 ) ) , ⁑ ΞΌ > 0 ,
    β–Ί
    12.12.2 0 e 3 4 ⁒ t 2 ⁒ t a 3 2 ⁒ U ⁑ ( a , t ) ⁒ d t = 2 1 4 + 1 2 ⁒ a ⁒ Ξ“ ⁑ ( a 1 2 ) ⁒ cos ⁑ ( ( 1 4 ⁒ a + 1 8 ) ⁒ Ο€ ) , ⁑ a < 1 2 ,
    β–Ί
    12.12.3 0 e 1 4 ⁒ t 2 ⁒ t a 1 2 ⁒ ( x 2 + t 2 ) 1 ⁒ U ⁑ ( a , t ) ⁒ d t = Ο€ / 2 ⁒ Ξ“ ⁑ ( 1 2 a ) ⁒ x a 3 2 ⁒ e 1 4 ⁒ x 2 ⁒ U ⁑ ( a , x ) , ⁑ a < 1 2 , x > 0 .
    β–Ί
    Nicholson-type Integral
    β–Ί
    12.12.4 ( U ⁑ ( a , z ) ) 2 + ( U ¯ ⁑ ( a , z ) ) 2 = 2 3 2 Ο€ ⁒ Ξ“ ⁑ ( 1 2 a ) ⁒ 0 e 2 ⁒ a ⁒ t + 1 2 ⁒ z 2 ⁒ tanh ⁑ t sinh ⁑ ( 2 ⁒ t ) ⁒ d t , ⁑ a < 1 2 .
    19: 10.9 Integral Representations
    β–Ί
    H Ξ½ ( 1 ) ⁑ ( z ) = Ξ“ ⁑ ( 1 2 Ξ½ ) ⁒ ( 1 2 ⁒ z ) Ξ½ Ο€ 3 2 ⁒ i ⁒ 1 + i ⁒ ( 1 + ) e i ⁒ z ⁒ t ⁒ ( t 2 1 ) Ξ½ 1 2 ⁒ d t ,
    β–Ί
    H Ξ½ ( 2 ) ⁑ ( z ) = Ξ“ ⁑ ( 1 2 Ξ½ ) ⁒ ( 1 2 ⁒ z ) Ξ½ Ο€ 3 2 ⁒ i ⁒ 1 i ⁒ ( 1 + ) e i ⁒ z ⁒ t ⁒ ( t 2 1 ) Ξ½ 1 2 ⁒ d t , Ξ½ 1 2 , 3 2 , , | ph ⁑ z | < 1 2 ⁒ Ο€ .
    β–Ί
    Mellin–Barnes Type Integrals
    β–ΊFor (10.9.22)–(10.9.25) and further integrals of this type see Paris and Kaminski (2001, pp. 114–116). … β–Ί
    Mellin–Barnes Type
    20: 9.12 Scorer Functions
    β–Ί
    e βˆ“ 2 ⁒ Ο€ ⁒ i / 3 ⁒ Hi ⁑ ( z ⁒ e βˆ“ 2 ⁒ Ο€ ⁒ i / 3 ) ,
    β–Ί
    9.12.15 Gi ⁑ ( z ) = 3 2 / 3 Ο€ ⁒ k = 0 cos ⁑ ( 2 ⁒ k 1 3 ⁒ Ο€ ) ⁒ Ξ“ ⁑ ( k + 1 3 ) ⁒ ( 3 1 / 3 ⁒ z ) k k ! ,
    β–ΊIf ΞΆ = 2 3 ⁒ z 3 / 2 or 2 3 ⁒ x 3 / 2 , and K 1 / 3 is the modified Bessel function (§10.25(ii)), then … β–Ί
    Mellin–Barnes Type Integral
    β–Ίwhere the integration contour separates the poles of Ξ“ ⁑ ( 1 3 + 1 3 ⁒ t ) from those of Ξ“ ⁑ ( t ) . …