About the Project

asymptotics of Jacobi polynomials

AdvancedHelp

(0.004 seconds)

11—20 of 21 matching pages

11: 18.34 Bessel Polynomials
In this limit the finite system of Jacobi polynomials P n ( α , β ) ( x ) which is orthogonal on ( 1 , ) (see §18.3) tends to the finite system of Romanovski–Bessel polynomials which is orthogonal on ( 0 , ) (see (18.34.5_5)). …
12: 18.24 Hahn Class: Asymptotic Approximations
Similar approximations are included for Jacobi, Krawtchouk, and Meixner polynomials.
13: Bibliography L
  • J. Letessier (1995) Co-recursive associated Jacobi polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 203–213.
  • X. Li and R. Wong (2000) A uniform asymptotic expansion for Krawtchouk polynomials. J. Approx. Theory 106 (1), pp. 155–184.
  • X. Li and R. Wong (2001) On the asymptotics of the Meixner-Pollaczek polynomials and their zeros. Constr. Approx. 17 (1), pp. 59–90.
  • J. L. López and N. M. Temme (1999b) Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 239 (2), pp. 457–477.
  • Y. L. Luke and J. Wimp (1963) Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray. Math. Comp. 17 (84), pp. 395–404.
  • 14: Bibliography G
  • E. A. Galapon and K. M. L. Martinez (2014) Exactification of the Poincaré asymptotic expansion of the Hankel integral: spectacularly accurate asymptotic expansions and non-asymptotic scales. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2162), pp. 20130529, 16.
  • G. Gasper (1972) An inequality of Turán type for Jacobi polynomials. Proc. Amer. Math. Soc. 32, pp. 435–439.
  • L. Gatteschi (1987) New inequalities for the zeros of Jacobi polynomials. SIAM J. Math. Anal. 18 (6), pp. 1549–1562.
  • L. Gatteschi (2002) Asymptotics and bounds for the zeros of Laguerre polynomials: A survey. J. Comput. Appl. Math. 144 (1-2), pp. 7–27.
  • W. M. Y. Goh (1998) Plancherel-Rotach asymptotics for the Charlier polynomials. Constr. Approx. 14 (2), pp. 151–168.
  • 15: Bibliography K
  • E. G. Kalnins and W. Miller (1993) Orthogonal Polynomials on n -spheres: Gegenbauer, Jacobi and Heun. In Topics in Polynomials of One and Several Variables and their Applications, pp. 299–322.
  • S. F. Khwaja and A. B. Olde Daalhuis (2012) Uniform asymptotic approximations for the Meixner-Sobolev polynomials. Anal. Appl. (Singap.) 10 (3), pp. 345–361.
  • T. H. Koornwinder (1974) Jacobi polynomials. II. An analytic proof of the product formula. SIAM J. Math. Anal. 5, pp. 125–137.
  • T. H. Koornwinder (1975b) Jacobi polynomials. III. An analytic proof of the addition formula. SIAM. J. Math. Anal. 6, pp. 533–543.
  • T. Koornwinder, A. Kostenko, and G. Teschl (2018) Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, pp. 796–821.
  • 16: Bibliography
  • R. Askey and J. Fitch (1969) Integral representations for Jacobi polynomials and some applications. J. Math. Anal. Appl. 26 (2), pp. 411–437.
  • R. Askey and G. Gasper (1976) Positive Jacobi polynomial sums. II. Amer. J. Math. 98 (3), pp. 709–737.
  • R. Askey and B. Razban (1972) An integral for Jacobi polynomials. Simon Stevin 46, pp. 165–169.
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • R. Askey (1974) Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal. 5, pp. 119–124.
  • 17: Errata
    We have also incorporated material on continuous q -Jacobi polynomials, and several new limit transitions. …
  • Chapter 35 Functions of Matrix Argument

    The generalized hypergeometric function of matrix argument F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) , was linked inadvertently as its single variable counterpart F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) . Furthermore, the Jacobi function of matrix argument P ν ( γ , δ ) ( 𝐓 ) , and the Laguerre function of matrix argument L ν ( γ ) ( 𝐓 ) , were also linked inadvertently (and incorrectly) in terms of the single variable counterparts given by P ν ( γ , δ ) ( 𝐓 ) , and L ν ( γ ) ( 𝐓 ) . In order to resolve these inconsistencies, these functions now link correctly to their respective definitions.

  • Equation (18.27.6)

    18.27.6 P n ( α , β ) ( x ; c , d ; q ) = c n q ( α + 1 ) n ( q α + 1 , q α + 1 c 1 d ; q ) n ( q , q ; q ) n P n ( q α + 1 c 1 x ; q α , q β , q α c 1 d ; q )

    Originally the first argument to the big q -Jacobi polynomial on the right-hand side was written incorrectly as q α + 1 c 1 d x .

    Reported 2017-09-27 by Tom Koornwinder.

  • Equation (18.15.22)

    Because of the use of the O order symbol on the right-hand side, the asymptotic expansion for the generalized Laguerre polynomial L n ( α ) ( ν x ) was rewritten as an equality.

  • Table 18.3.1

    Special cases of normalization of Jacobi polynomials for which the general formula is undefined have been stated explicitly in Table 18.3.1.

  • 18: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • L. Chen, M. E. H. Ismail, and P. Simeonov (1999) Asymptotics of Racah coefficients and polynomials. J. Phys. A 32 (3), pp. 537–553.
  • Y. Chen and M. E. H. Ismail (1998) Asymptotics of the largest zeros of some orthogonal polynomials. J. Phys. A 31 (25), pp. 5525–5544.
  • Y. Chow, L. Gatteschi, and R. Wong (1994) A Bernstein-type inequality for the Jacobi polynomial. Proc. Amer. Math. Soc. 121 (3), pp. 703–709.
  • E. T. Copson (1963) On the asymptotic expansion of Airy’s integral. Proc. Glasgow Math. Assoc. 6, pp. 113–115.
  • 19: Bibliography H
  • E. Hahn (1980) Asymptotik bei Jacobi-Polynomen und Jacobi-Funktionen. Math. Z. 171 (3), pp. 201–226 (German).
  • R. A. Handelsman and J. S. Lew (1970) Asymptotic expansion of Laplace transforms near the origin. SIAM J. Math. Anal. 1 (1), pp. 118–130.
  • R. A. Handelsman and J. S. Lew (1971) Asymptotic expansion of a class of integral transforms with algebraically dominated kernels. J. Math. Anal. Appl. 35 (2), pp. 405–433.
  • G. H. Hardy and S. Ramanujan (1918) Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. (2) 17, pp. 75–115.
  • P. Henrici (1977) Applied and Computational Complex Analysis. Vol. 2: Special Functions—Integral Transforms—Asymptotics—Continued Fractions. Wiley-Interscience [John Wiley & Sons], New York.
  • 20: Bibliography J
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • D. S. Jones (1972) Asymptotic behavior of integrals. SIAM Rev. 14 (2), pp. 286–317.
  • D. S. Jones (1997) Introduction to Asymptotics: A Treatment Using Nonstandard Analysis. World Scientific Publishing Co. Inc., River Edge, NJ.
  • D. S. Jones (2001) Asymptotics of the hypergeometric function. Math. Methods Appl. Sci. 24 (6), pp. 369–389.