About the Project

Laguerre

AdvancedHelp

(0.001 seconds)

11—20 of 53 matching pages

11: 18.1 Notation
Classical OP’s
  • Laguerre: L n ( α ) ( x ) and L n ( x ) = L n ( 0 ) ( x ) . ( L n ( α ) ( x ) with α 0 is also called Generalized Laguerre.)

  • q -Laguerre: L n ( α ) ( x ; q ) .

  • 12: 18.9 Recurrence Relations and Derivatives
    Laguerre
    18.9.13 L n ( α ) ( x ) = L n ( α + 1 ) ( x ) L n 1 ( α + 1 ) ( x ) ,
    18.9.14 x L n ( α + 1 ) ( x ) = ( n + 1 ) L n + 1 ( α ) ( x ) + ( n + α + 1 ) L n ( α ) ( x ) .
    Laguerre
    Further n -th derivative formulas relating two different Laguerre polynomials can be obtained from §13.3(ii) by substitution of (13.6.19). …
    13: 8.7 Series Expansions
    §8.7 Series Expansions
    For the functions e n ( z ) , 𝗂 n ( 1 ) ( z ) , and L n ( α ) ( x ) see (8.4.11), §§10.47(ii), and 18.3, respectively. …
    8.7.6 Γ ( a , x ) = x a e x n = 0 L n ( a ) ( x ) n + 1 , x > 0 , a < 1 2 .
    14: 18.5 Explicit Representations
    §18.5 Explicit Representations
    Laguerre
    Similarly in the cases of the ultraspherical polynomials C n ( λ ) ( x ) and the Laguerre polynomials L n ( α ) ( x ) we assume that λ > 1 2 , λ 0 , and α > 1 , unless stated otherwise. …
    Laguerre
    15: 18.21 Hahn Class: Interrelations
    Meixner Laguerre
    18.21.8 lim c 1 M n ( ( 1 c ) 1 x ; α + 1 , c ) = L n ( α ) ( x ) L n ( α ) ( 0 ) .
    Meixner–Pollaczek Laguerre
    18.21.12 lim ϕ 0 P n ( 1 2 α + 1 2 ) ( ( 2 ϕ ) 1 x ; ϕ ) = L n ( α ) ( x ) .
    See accompanying text
    Figure 18.21.1: Askey scheme. … Magnify
    16: 18.10 Integral Representations
    Laguerre
    for the Jacobi, Laguerre, and Hermite polynomials. …
    Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
    p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
    Laguerre
    18.10.9 L n ( α ) ( x ) = e x x 1 2 α n ! 0 e t t n + 1 2 α J α ( 2 x t ) d t , α > 1 .
    17: 18.7 Interrelations and Limit Relations
    18.7.19 H 2 n ( x ) = ( 1 ) n 2 2 n n ! L n ( 1 2 ) ( x 2 ) ,
    18.7.20 H 2 n + 1 ( x ) = ( 1 ) n 2 2 n + 1 n ! x L n ( 1 2 ) ( x 2 ) .
    Jacobi Laguerre
    18.7.21 lim β P n ( α , β ) ( 1 ( 2 x / β ) ) = L n ( α ) ( x ) .
    Laguerre Hermite
    18: 18.11 Relations to Other Functions
    Laguerre
    18.11.2 L n ( α ) ( x ) = ( α + 1 ) n n ! M ( n , α + 1 , x ) = ( 1 ) n n ! U ( n , α + 1 , x ) = ( α + 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x M n + 1 2 ( α + 1 ) , 1 2 α ( x ) = ( 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x W n + 1 2 ( α + 1 ) , 1 2 α ( x ) .
    Laguerre
    18.11.6 lim n 1 n α L n ( α ) ( z n ) = 1 z 1 2 α J α ( 2 z 1 2 ) .
    19: 18.34 Bessel Polynomials
    For the confluent hypergeometric function F 1 1 and the generalized hypergeometric function F 0 2 , the Laguerre polynomial L n ( α ) and the Whittaker function W κ , μ see §16.2(ii), §16.2(iv), (18.5.12), and (13.14.3), respectively.
    18.34.1 y n ( x ; a ) = F 0 2 ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ( x 2 ) n F 1 1 ( n 2 n a + 2 ; 2 x ) = n ! ( 1 2 x ) n L n ( 1 a 2 n ) ( 2 x 1 ) = ( 1 2 x ) 1 1 2 a e 1 / x W 1 1 2 a , 1 2 ( a 1 ) + n ( 2 x 1 ) .
    18.34.7_1 ϕ n ( x ; λ ) = e λ e x ( 2 λ e x ) λ 1 2 y n ( λ 1 e x ; 2 2 λ ) / n ! = ( 1 ) n e λ e x ( 2 λ e x ) λ n 1 2 L n ( 2 λ 2 n 1 ) ( 2 λ e x ) = ( 2 λ ) 1 2 e x / 2 W λ , n + 1 2 λ ( 2 λ e x ) / n ! , n = 0 , 1 , , N = λ 3 2 , λ > 1 2 ,
    expressed in terms of Romanovski–Bessel polynomials, Laguerre polynomials or Whittaker functions, we have …
    20: 18.39 Applications in the Physical Sciences
    a) Spherical Radial Coulomb Wave Functions Expressed in terms of Laguerre OP’s
    p here being the order of the Laguerre polynomial, L p ( 2 l + 1 ) of Table 18.8.1, line 11, and l the angular momentum quantum number, and where …
    d) Radial Coulomb Wave Functions Expressed in Terms of the Associated Coulomb–Laguerre OP’s
    The associated Coulomb–Laguerre polynomials are defined as … For physical applications of q -Laguerre polynomials see §17.17. …