About the Project

Kummer solutions

AdvancedHelp

(0.001 seconds)

11—20 of 20 matching pages

11: Bibliography Z
β–Ί
  • A. Zarzo, J. S. Dehesa, and R. J. Yañez (1995) Distribution of zeros of Gauss and Kummer hypergeometric functions. A semiclassical approach. Ann. Numer. Math. 2 (1-4), pp. 457–472.
  • β–Ί
  • Zeilberger (website) Doron Zeilberger’s Maple Packages and Programs Department of Mathematics, Rutgers University, New Jersey.
  • β–Ί
  • J. M. Zhang, X. C. Li, and C. K. Qu (1996) Error bounds for asymptotic solutions of second-order linear difference equations. J. Comput. Appl. Math. 71 (2), pp. 191–212.
  • 12: 33.14 Definitions and Basic Properties
    β–Ί
    §33.14(i) Coulomb Wave Equation
    β–Ίwhere M ΞΊ , ΞΌ ⁑ ( z ) and M ⁑ ( a , b , z ) are defined in §§13.14(i) and 13.2(i), and …This is a consequence of Kummer’s transformation (§13.2(vii)). … β–Ί
    §33.14(iii) Irregular Solution h ⁑ ( Ο΅ , β„“ ; r )
    β–Ί
    §33.14(iv) Solutions s ⁑ ( Ο΅ , β„“ ; r ) and c ⁑ ( Ο΅ , β„“ ; r )
    13: Bibliography D
    β–Ί
  • A. Deaño, J. Segura, and N. M. Temme (2010) Computational properties of three-term recurrence relations for Kummer functions. J. Comput. Appl. Math. 233 (6), pp. 1505–1510.
  • β–Ί
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • β–Ί
  • B. Deconinck and H. Segur (2000) Pole dynamics for elliptic solutions of the Korteweg-de Vries equation. Math. Phys. Anal. Geom. 3 (1), pp. 49–74.
  • β–Ί
  • T. M. Dunster (1996c) Error bounds for exponentially improved asymptotic solutions of ordinary differential equations having irregular singularities of rank one. Methods Appl. Anal. 3 (1), pp. 109–134.
  • β–Ί
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • 14: Bibliography K
    β–Ί
  • K. Kajiwara and Y. Ohta (1996) Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37 (9), pp. 4693–4704.
  • β–Ί
  • K. Kajiwara and Y. Ohta (1998) Determinant structure of the rational solutions for the Painlevé IV equation. J. Phys. A 31 (10), pp. 2431–2446.
  • β–Ί
  • A. A. Kapaev (1988) Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Differ. Uravn. 24 (10), pp. 1684–1695 (Russian).
  • β–Ί
  • N. M. Katz (1975) The congruences of Clausen-von Staudt and Kummer for Bernoulli-Hurwitz numbers. Math. Ann. 216 (1), pp. 1–4.
  • β–Ί
  • Y. A. Kravtsov (1964) Asymptotic solution of Maxwell’s equations near caustics. Izv. Vuz. Radiofiz. 7, pp. 1049–1056.
  • 15: Bibliography M
    β–Ί
  • R. S. Maier (2007) The 192 solutions of the Heun equation. Math. Comp. 76 (258), pp. 811–843.
  • β–Ί
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • β–Ί
  • M. Mazzocco (2001b) Picard and Chazy solutions to the Painlevé VI equation. Math. Ann. 321 (1), pp. 157–195.
  • β–Ί
  • A. R. Miller (2003) On a Kummer-type transformation for the generalized hypergeometric function F 2 2 . J. Comput. Appl. Math. 157 (2), pp. 507–509.
  • β–Ί
  • Y. Murata (1995) Classical solutions of the third Painlevé equation. Nagoya Math. J. 139, pp. 37–65.
  • 16: 33.2 Definitions and Basic Properties
    β–Ί
    §33.2(i) Coulomb Wave Equation
    β–Ίwhere M ΞΊ , ΞΌ ⁑ ( z ) and M ⁑ ( a , b , z ) are defined in §§13.14(i) and 13.2(i), and …This is a consequence of Kummer’s transformation (§13.2(vii)). … β–Ίwhere W ΞΊ , ΞΌ ⁑ ( z ) , U ⁑ ( a , b , z ) are defined in §§13.14(i) and 13.2(i), … β–ΊAs in the case of F β„“ ⁑ ( Ξ· , ρ ) , the solutions H β„“ ± ⁑ ( Ξ· , ρ ) and G β„“ ⁑ ( Ξ· , ρ ) are analytic functions of ρ when 0 < ρ < . …
    17: Bibliography Y
    β–Ί
  • A. I. YablonskiΔ­ (1959) On rational solutions of the second Painlevé equation. Vesti Akad. Navuk. BSSR Ser. Fiz. Tkh. Nauk. 3, pp. 30–35 (Russian).
  • β–Ί
  • T. Yoshida (1995) Computation of Kummer functions U ⁒ ( a , b , x ) for large argument x by using the Ο„ -method. Trans. Inform. Process. Soc. Japan 36 (10), pp. 2335–2342 (Japanese).
  • 18: 9.10 Integrals
    β–ΊLet w ⁑ ( z ) be any solution of Airy’s equation (9.2.1). … β–Ί
    9.10.8 z ⁒ w ⁑ ( z ) ⁒ d z = w ⁑ ( z ) ,
    β–Ί
    9.10.9 z 2 ⁒ w ⁑ ( z ) ⁒ d z = z ⁒ w ⁑ ( z ) w ⁑ ( z ) ,
    β–Ί
    9.10.14 0 e p ⁒ t ⁒ Ai ⁑ ( t ) ⁒ d t = e p 3 / 3 ⁒ ( 1 3 p ⁒ F 1 1 ⁑ ( 1 3 ; 4 3 ; 1 3 ⁒ p 3 ) 3 4 / 3 ⁒ Ξ“ ⁑ ( 4 3 ) + p 2 ⁒ F 1 1 ⁑ ( 2 3 ; 5 3 ; 1 3 ⁒ p 3 ) 3 5 / 3 ⁒ Ξ“ ⁑ ( 5 3 ) ) , p β„‚ .
    β–ΊFor the confluent hypergeometric function F 1 1 and the incomplete gamma function Ξ“ see §§13.1, 13.2, and 8.2(i). …
    19: 16.4 Argument Unity
    β–Ί
    §16.4(iii) Identities
    β–ΊThe other three-term relations are extensions of Kummer’s relations for F 1 2 ’s given in §15.10(ii). … … β–ΊRelations between three solutions of three-term recurrence relations are given by Masson (1991). …
    20: Bibliography C
    β–Ί
  • J. Camacho, R. Guimerà, and L. A. N. Amaral (2002) Analytical solution of a model for complex food webs. Phys. Rev. E 65 (3), pp. (030901–1)–(030901–4).
  • β–Ί
  • L. D. Carr, C. W. Clark, and W. P. Reinhardt (2000) Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity. Phys. Rev. A 62 (063610), pp. 1–10.
  • β–Ί
  • J. Choi and A. K. Rathie (2013) An extension of a Kummer’s quadratic transformation formula with an application. Proc. Jangjeon Math. Soc. 16 (2), pp. 229–235.
  • β–Ί
  • P. A. Clarkson (1991) Nonclassical Symmetry Reductions and Exact Solutions for Physically Significant Nonlinear Evolution Equations. In Nonlinear and Chaotic Phenomena in Plasmas, Solids and Fluids (Edmonton, AB, 1990), W. Rozmus and J. A. Tuszynski (Eds.), pp. 72–79.
  • β–Ί
  • P. A. Clarkson (2005) Special polynomials associated with rational solutions of the fifth Painlevé equation. J. Comput. Appl. Math. 178 (1-2), pp. 111–129.