About the Project

DVR (discrete variable representations)

AdvancedHelp

(0.003 seconds)

11—20 of 677 matching pages

11: Bibliography G
  • B. Gabutti and B. Minetti (1981) A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function. J. Comput. Phys. 42 (2), pp. 277–287.
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • GAP (website) The GAP Group, Centre for Interdisciplinary Research in Computational Algebra, University of St. Andrews, United Kingdom.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • E. Grosswald (1985) Representations of Integers as Sums of Squares. Springer-Verlag, New York.
  • 12: Bibliography H
  • N. Hale and A. Townsend (2016) A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36 (4), pp. 1670–1684.
  • B. Hall (2015) Lie groups, Lie algebras, and representations. Second edition, Graduate Texts in Mathematics, Vol. 222, Springer, Cham.
  • P. Henrici (1986) Applied and Computational Complex Analysis. Vol. 3: Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons Inc.], New York.
  • F. T. Howard (1996a) Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162 (1-3), pp. 175–185.
  • T. E. Hull and A. Abrham (1986) Variable precision exponential function. ACM Trans. Math. Software 12 (2), pp. 79–91.
  • 13: 18.1 Notation
    x , y , t real variables.
    z ( = x + i y ) complex variable.
  • Discrete q -Hermite I: h n ( x ; q ) .

  • Discrete q -Hermite II: h ~ n ( x ; q ) .

  • Classical OP’s in Two Variables
    14: 10.64 Integral Representations
    §10.64 Integral Representations
    10.64.1 ber n ( x 2 ) = ( 1 ) n π 0 π cos ( x sin t n t ) cosh ( x sin t ) d t ,
    10.64.2 bei n ( x 2 ) = ( 1 ) n π 0 π sin ( x sin t n t ) sinh ( x sin t ) d t .
    See Apelblat (1991) for these results, and also for similar representations for ber ν ( x 2 ) , bei ν ( x 2 ) , and their ν -derivatives. …
    15: 18.3 Definitions
    For representations of the polynomials in Table 18.3.1 by Rodrigues formulas, see §18.5(ii). … In addition to the orthogonal property given by Table 18.3.1, the Chebyshev polynomials T n ( x ) , n = 0 , 1 , , N , are orthogonal on the discrete point set comprising the zeros x N + 1 , n , n = 1 , 2 , , N + 1 , of T N + 1 ( x ) : …
    18.3.2 x N + 1 , n = cos ( ( n 1 2 ) π / ( N + 1 ) ) .
    For another version of the discrete orthogonality property of the polynomials T n ( x ) see (3.11.9). … It is also related to a discrete Fourier-cosine transform, see Britanak et al. (2007). …
    16: 18.28 Askey–Wilson Class
    The Askey–Wilson polynomials form a system of OP’s { p n ( x ) } , n = 0 , 1 , 2 , , that are orthogonal with respect to a weight function on a bounded interval, possibly supplemented with discrete weights on a finite set. … In the remainder of this section the Askey–Wilson class OP’s are defined by their q -hypergeometric representations, followed by their orthogonal properties. … More generally, if | a b | 1 instead of | a | , | b | 1 , discrete terms need to be added to the right-hand side of (18.28.8); see Koekoek et al. (2010, Eq. (14.8.3)). … Leonard (1982) classified all (finite or infinite) discrete systems of OP’s p n ( x ) on a set { x ( m ) } for which there is a system of discrete OP’s q m ( y ) on a set { y ( n ) } such that p n ( x ( m ) ) = q m ( y ( n ) ) . …
    17: Bibliography B
  • Á. Baricz and T. K. Pogány (2013) Integral representations and summations of the modified Struve function. Acta Math. Hungar. 141 (3), pp. 254–281.
  • L. J. Billera, C. Greene, R. Simion, and R. P. Stanley (Eds.) (1996) Formal Power Series and Algebraic Combinatorics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 24, American Mathematical Society, Providence, RI.
  • R. Blackmore and B. Shizgal (1985) Discrete ordinate solution of Fokker-Planck equations with non-linear coefficients. Phys. Rev. A 31 (3), pp. 1855–1868.
  • R. Blackmore, U. Weinert, and B. Shizgal (1986) Discrete ordinate solution of a Fokker-Planck equation in laser physics. Transport Theory Statist. Phys. 15 (1-2), pp. 181–210.
  • V. Britanak, P. C. Yip, and K. R. Rao (2007) Discrete Cosine and Sine Transforms. General Properties, Fast Algorithms and Integer Approximations. Elsevier/Academic Press, Amsterdam.
  • 18: Bibliography L
  • R. E. Langer (1934) The solutions of the Mathieu equation with a complex variable and at least one parameter large. Trans. Amer. Math. Soc. 36 (3), pp. 637–695.
  • Y. T. Li and R. Wong (2008) Integral and series representations of the Dirac delta function. Commun. Pure Appl. Anal. 7 (2), pp. 229–247.
  • J. C. Light and T. Carrington Jr. (2000) Discrete-variable representations and their utilization. In Advances in Chemical Physics, pp. 263–310.
  • J. L. López and N. M. Temme (1999b) Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 239 (2), pp. 457–477.
  • T. A. Lowdon (1970) Integral representation of the Hankel function in terms of parabolic cylinder functions. Quart. J. Mech. Appl. Math. 23 (3), pp. 315–327.
  • 19: 26.22 Software
  • GAP (website). A system for computational discrete algebra.

  • 20: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b) Integral representations for products of Airy functions. III. Quartic products. Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman, and D. R. Shier (Eds.) (2000) Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton, FL.