About the Project

.巴西对塞尔维亚世界杯_『welcom_』世界杯ipad用啥看_w6n2c9o_2022年11月30日1时9分10秒_n1z1jllvb_gov_hk

AdvancedHelp

(0.004 seconds)

11—20 of 246 matching pages

11: Bibliography Y
  • A. I. Yablonskiĭ (1959) On rational solutions of the second Painlevé equation. Vesti Akad. Navuk. BSSR Ser. Fiz. Tkh. Nauk. 3, pp. 30–35 (Russian).
  • H. A. Yamani and W. P. Reinhardt (1975) L -squared discretizations of the continuum: Radial kinetic energy and the Coulomb Hamiltonian. Phys. Rev. A 11 (4), pp. 1144–1156.
  • T. Yoshida (1995) Computation of Kummer functions U ( a , b , x ) for large argument x by using the τ -method. Trans. Inform. Process. Soc. Japan 36 (10), pp. 2335–2342 (Japanese).
  • A. Young and A. Kirk (1964) Bessel Functions. Part IV: Kelvin Functions. Royal Society Mathematical Tables, Volume 10, Cambridge University Press, Cambridge-New York.
  • 12: 27.2 Functions
    Table 27.2.1: Primes.
    n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
    5 11 47 97 149 197 257 313 379 439 499
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
    4 2 3 7 17 16 2 18 30 8 8 72 43 42 2 44
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
    13: 30.7 Graphics
    See accompanying text
    Figure 30.7.1: Eigenvalues λ n 0 ( γ 2 ) , n = 0 , 1 , 2 , 3 , 10 γ 2 10 . Magnify
    See accompanying text
    Figure 30.7.2: Eigenvalues λ n 1 ( γ 2 ) n = 1 , 2 , 3 , 4 , 10 γ 2 10 . Magnify
    See accompanying text
    Figure 30.7.4: Eigenvalues λ n 10 ( γ 2 ) , n = 10 , 11 , 12 , 13 , 50 γ 2 150 . Magnify
    See accompanying text
    Figure 30.7.7: 𝖯𝗌 n 1 ( x , 30 ) , n = 1 , 2 , 3 , 4 , 1 x 1 . Magnify
    See accompanying text
    Figure 30.7.8: 𝖯𝗌 n 1 ( x , 30 ) , n = 1 , 2 , 3 , 4 , 1 x 1 . Magnify
    14: 5.10 Continued Fractions
    a 1 = 1 30 ,
    For exact values of a 7 to a 11 and 40S values of a 0 to a 40 , see Char (1980). …
    15: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 16: Bibliography G
  • W. Gautschi (1966) Algorithm 292: Regular Coulomb wave functions. Comm. ACM 9 (11), pp. 793–795.
  • W. Gautschi (1969) Algorithm 363: Complex error function. Comm. ACM 12 (11), pp. 635.
  • A. Gil, J. Segura, and N. M. Temme (2002c) Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30 (1), pp. 11–23.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • V. I. Gromak (1975) Theory of Painlevé’s equations. Differ. Uravn. 11 (11), pp. 373–376 (Russian).
  • 17: 24.20 Tables
    Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. … For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
    18: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Zhang and Jin (1996, p. 338) tabulates 0 x Ai ( t ) d t and 0 x Bi ( t ) d t for x = 10 ( .2 ) 10 to 8D or 8S.

  • Scorer (1950) tabulates Gi ( x ) and Hi ( x ) for x = 0 ( .1 ) 10 ; 7D.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Gil et al. (2003c) tabulates the only positive zero of Gi ( z ) , the first 10 negative real zeros of Gi ( z ) and Gi ( z ) , and the first 10 complex zeros of Gi ( z ) , Gi ( z ) , Hi ( z ) , and Hi ( z ) . Precision is 11 or 12S.

  • 19: Bibliography B
  • R. Barakat (1961) Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials. Math. Comp. 15 (73), pp. 7–11.
  • B. C. Berndt, S. Bhargava, and F. G. Garvan (1995) Ramanujan’s theories of elliptic functions to alternative bases. Trans. Amer. Math. Soc. 347 (11), pp. 4163–4244.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • A. Bhattacharyya and L. Shafai (1988) Theoretical and experimental investigation of the elliptical annual ring antenna. IEEE Trans. Antennas and Propagation 36 (11), pp. 1526–1530.
  • R. L. Bishop (1981) Rainbow over Woolsthorpe Manor. Notes and Records Roy. Soc. London 36 (1), pp. 3–11 (1 plate).
  • 20: 10.75 Tables
  • Zhang and Jin (1996, pp. 185–195) tabulates J n ( x ) , J n ( x ) , Y n ( x ) , Y n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 50 , 100 , x = 1 , 5, 10, 25, 50, 100, 9S; J n + α ( x ) , J n + α ( x ) , Y n + α ( x ) , Y n + α ( x ) , n = 0 ( 1 ) 5 , 10 , 30 , 50 , 100 , α = 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , x = 1 , 5 , 10 , 50 , 8S; real and imaginary parts of J n + α ( z ) , J n + α ( z ) , Y n + α ( z ) , Y n + α ( z ) , n = 0 ( 1 ) 15 , 20 ( 10 ) 50 , 100 , α = 0 , 1 2 , z = 4 + 2 i , 20 + 10 i , 8S.

  • Abramowitz and Stegun (1964, Chapter 11) tabulates 0 x J 0 ( t ) d t , 0 x Y 0 ( t ) d t , x = 0 ( .1 ) 10 , 10D; 0 x t 1 ( 1 J 0 ( t ) ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 5 , 8D.

  • Zhang and Jin (1996, pp. 240–250) tabulates I n ( x ) , I n ( x ) , K n ( x ) , K n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 50 , 100 , x = 1 , 5 , 10 , 25 , 50 , 100 , 9S; I n + α ( x ) , I n + α ( x ) , K n + α ( x ) , K n + α ( x ) , n = 0 ( 1 ) 5 , 10, 30, 50, 100, α = 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , x = 1 , 5, 10, 50, 8S; real and imaginary parts of I n + α ( z ) , I n + α ( z ) , K n + α ( z ) , K n + α ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, α = 0 , 1 2 , z = 4 + 2 i , 20 + 10 i , 8S.

  • Abramowitz and Stegun (1964, Chapter 11) tabulates e x 0 x I 0 ( t ) d t , e x x K 0 ( t ) d t , x = 0 ( .1 ) 10 , 7D; e x 0 x t 1 ( I 0 ( t ) 1 ) d t , x e x x t 1 K 0 ( t ) d t , x = 0 ( .1 ) 5 , 6D.

  • Zhang and Jin (1996, pp. 296–305) tabulates 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗒 n ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; x 𝗃 n ( x ) , ( x 𝗃 n ( x ) ) , x 𝗒 n ( x ) , ( x 𝗒 n ( x ) ) (Riccati–Bessel functions and their derivatives), n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; real and imaginary parts of 𝗃 n ( z ) , 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗒 n ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) , 𝗄 n ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, z = 4 + 2 i , 20 + 10 i , 8S. (For the notation replace j , y , i , k by 𝗃 , 𝗒 , 𝗂 ( 1 ) , 𝗄 , respectively.)