Index
Notations
Search
Need Help?
How to Cite
Customize
Annotate
UnAnnotate
What's New
About the Project
30
Spheroidal Wave Functions
Properties
30.6
Functions of Complex Argument
30.8
Expansions in Series of Ferrers Functions
§30.7
Graphics
Permalink:
http://dlmf.nist.gov/30.7
See also:
Annotations for
30
Contents
§30.7(i)
Eigenvalues
§30.7(ii)
Functions of the First Kind
§30.7(iii)
Functions of the Second Kind
§30.7(iv)
Functions of Complex Argument
§30.7(i)
Eigenvalues
Keywords:
spheroidal differential equation
Notes:
Figures
30.7.1
–
30.7.4
were produced at NIST with the aid of Maple procedures provided by the author.
Permalink:
http://dlmf.nist.gov/30.7.i
See also:
Annotations for
30.7
Figure 30.7.1:
Eigenvalues
${\lambda}_{n}^{0}\left({\gamma}^{2}\right)$
,
$n=0,1,2,3$
,
$-10\le {\gamma}^{2}\le 10$
.
Symbols:
${\lambda}_{n}^{m}\left({\gamma}^{2}\right)$
: eigenvalues of the spheroidal differential equation
,
$n\ge m$
: integer degree
and
${\gamma}^{2}$
: real parameter
Referenced by:
§30.7(i)
Permalink:
http://dlmf.nist.gov/30.7.F1
Encodings:
pdf
,
png
See also:
Annotations for
30.7(i)
Figure 30.7.2:
Eigenvalues
${\lambda}_{n}^{1}\left({\gamma}^{2}\right)$
$n=1,2,3,4$
,
$-10\le {\gamma}^{2}\le 10$
.
Symbols:
${\lambda}_{n}^{m}\left({\gamma}^{2}\right)$
: eigenvalues of the spheroidal differential equation
,
$n\ge m$
: integer degree
and
${\gamma}^{2}$
: real parameter
Permalink:
http://dlmf.nist.gov/30.7.F2
Encodings:
pdf
,
png
See also:
Annotations for
30.7(i)
Figure 30.7.3:
Eigenvalues
${\lambda}_{n}^{5}\left({\gamma}^{2}\right)$
,
$n=5,6,7,8$
,
$-40\le {\gamma}^{2}\le 40$
.
Symbols:
${\lambda}_{n}^{m}\left({\gamma}^{2}\right)$
: eigenvalues of the spheroidal differential equation
,
$n\ge m$
: integer degree
and
${\gamma}^{2}$
: real parameter
Permalink:
http://dlmf.nist.gov/30.7.F3
Encodings:
pdf
,
png
See also:
Annotations for
30.7(i)
Figure 30.7.4:
Eigenvalues
${\lambda}_{n}^{10}\left({\gamma}^{2}\right)$
,
$n=10,11,12,13$
,
$-50\le {\gamma}^{2}\le 150$
.
Symbols:
${\lambda}_{n}^{m}\left({\gamma}^{2}\right)$
: eigenvalues of the spheroidal differential equation
,
$n\ge m$
: integer degree
and
${\gamma}^{2}$
: real parameter
Referenced by:
§30.7(i)
Permalink:
http://dlmf.nist.gov/30.7.F4
Encodings:
pdf
,
png
See also:
Annotations for
30.7(i)
§30.7(ii)
Functions of the First Kind
Keywords:
spheroidal wave functions
Notes:
Figures
30.7.5
–
30.7.10
were produced at NIST with the aid of Maple procedures provided by the author.
Permalink:
http://dlmf.nist.gov/30.7.ii
See also:
Annotations for
30.7
Figure 30.7.5:
${\mathsf{Ps}}_{n}^{0}(x,4)$
,
$n=0,1,2,3$
,
$-1\le x\le 1$
.
Symbols:
${\mathsf{Ps}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the first kind
,
$x$
: real variable
and
$n\ge m$
: integer degree
Referenced by:
§30.7(ii)
Permalink:
http://dlmf.nist.gov/30.7.F5
Encodings:
pdf
,
png
See also:
Annotations for
30.7(ii)
Figure 30.7.6:
${\mathsf{Ps}}_{n}^{0}(x,-4)$
,
$n=0,1,2,3$
,
$-1\le x\le 1$
.
Symbols:
${\mathsf{Ps}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the first kind
,
$x$
: real variable
and
$n\ge m$
: integer degree
Permalink:
http://dlmf.nist.gov/30.7.F6
Encodings:
pdf
,
png
See also:
Annotations for
30.7(ii)
Figure 30.7.7:
${\mathsf{Ps}}_{n}^{1}(x,30)$
,
$n=1,2,3,4$
,
$-1\le x\le 1$
.
Symbols:
${\mathsf{Ps}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the first kind
,
$x$
: real variable
and
$n\ge m$
: integer degree
Permalink:
http://dlmf.nist.gov/30.7.F7
Encodings:
pdf
,
png
See also:
Annotations for
30.7(ii)
Figure 30.7.8:
${\mathsf{Ps}}_{n}^{1}(x,-30)$
,
$n=1,2,3,4$
,
$-1\le x\le 1$
.
Symbols:
${\mathsf{Ps}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the first kind
,
$x$
: real variable
and
$n\ge m$
: integer degree
Permalink:
http://dlmf.nist.gov/30.7.F8
Encodings:
pdf
,
png
See also:
Annotations for
30.7(ii)
Visualization Help
Figure 30.7.9:
${\mathsf{Ps}}_{2}^{0}(x,{\gamma}^{2})$
,
$-1\le x\le 1$
,
$-50\le {\gamma}^{2}\le 50$
.
Symbols:
${\mathsf{Ps}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the first kind
,
$x$
: real variable
and
${\gamma}^{2}$
: real parameter
Permalink:
http://dlmf.nist.gov/30.7.F9
Encodings:
VRML
,
X3D
,
pdf
,
png
See also:
Annotations for
30.7(ii)
Visualization Help
Figure 30.7.10:
${\mathsf{Ps}}_{3}^{1}(x,{\gamma}^{2})$
,
$-1\le x\le 1$
,
$-50\le {\gamma}^{2}\le 50$
.
Symbols:
${\mathsf{Ps}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the first kind
,
$x$
: real variable
and
${\gamma}^{2}$
: real parameter
Referenced by:
§30.7(ii)
Permalink:
http://dlmf.nist.gov/30.7.F10
Encodings:
VRML
,
X3D
,
pdf
,
png
See also:
Annotations for
30.7(ii)
§30.7(iii)
Functions of the Second Kind
Notes:
Figures
30.7.11
–
30.7.15
were produced at NIST with the aid of Maple procedures provided by the author.
Permalink:
http://dlmf.nist.gov/30.7.iii
See also:
Annotations for
30.7
Figure 30.7.11:
${\mathsf{Qs}}_{n}^{0}(x,4)$
,
$n=0,1,2,3$
,
$$
.
Symbols:
${\mathsf{Qs}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the second kind
,
$x$
: real variable
and
$n\ge m$
: integer degree
Referenced by:
§30.7(iii)
Permalink:
http://dlmf.nist.gov/30.7.F11
Encodings:
pdf
,
png
See also:
Annotations for
30.7(iii)
Figure 30.7.12:
${\mathsf{Qs}}_{n}^{0}(x,-4)$
,
$n=0,1,2,3$
,
$$
.
Symbols:
${\mathsf{Qs}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the second kind
,
$x$
: real variable
and
$n\ge m$
: integer degree
Permalink:
http://dlmf.nist.gov/30.7.F12
Encodings:
pdf
,
png
See also:
Annotations for
30.7(iii)
Figure 30.7.13:
${\mathsf{Qs}}_{n}^{1}(x,4)$
, for
$n=1,2,3,4$
,
$$
.
Symbols:
${\mathsf{Qs}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the second kind
,
$x$
: real variable
and
$n\ge m$
: integer degree
Permalink:
http://dlmf.nist.gov/30.7.F13
Encodings:
pdf
,
png
See also:
Annotations for
30.7(iii)
Figure 30.7.14:
${\mathsf{Qs}}_{n}^{1}(x,-4)$
,
$n=1,2,3,4$
,
$$
.
Symbols:
${\mathsf{Qs}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the second kind
,
$x$
: real variable
and
$n\ge m$
: integer degree
Permalink:
http://dlmf.nist.gov/30.7.F14
Encodings:
pdf
,
png
See also:
Annotations for
30.7(iii)
Visualization Help
Figure 30.7.15:
$$
.
Symbols:
${\mathsf{Qs}}_{n}^{m}(x,{\gamma}^{2})$
: spheroidal wave function of the second kind
,
$x$
: real variable
and
${\gamma}^{2}$
: real parameter
Referenced by:
§30.7(iii)
Permalink:
http://dlmf.nist.gov/30.7.F15
Encodings:
VRML
,
X3D
,
pdf
,
png
See also:
Annotations for
30.7(iii)
§30.7(iv)
Functions of Complex Argument
Keywords:
spheroidal wave functions
Notes:
Figures
30.7.16
–
30.7.21
were produced at NIST with the aid of Maple procedures provided by the author.
Referenced by:
§30.1
Permalink:
http://dlmf.nist.gov/30.7.iv
See also:
Annotations for
30.7
Visualization Help
Figure 30.7.16:
$|{\mathit{Ps}}_{0}^{0}(x+\mathrm{i}y,4)|$
,
$-2\le x\le 2$
,
$-2\le y\le 2$
.
Symbols:
${\mathit{Ps}}_{n}^{m}(z,{\gamma}^{2})$
: spheroidal wave function of complex argument
,
$x$
: real variable
and
$y$
: real variable
Referenced by:
§30.7(iv)
Permalink:
http://dlmf.nist.gov/30.7.F16
Encodings:
VRML
,
X3D
,
pdf
,
png
See also:
Annotations for
30.7(iv)
Visualization Help
Figure 30.7.17:
$|{\mathit{Ps}}_{0}^{0}(x+\mathrm{i}y,-4)|$
,
$-2\le x\le 2$
,
$-2\le y\le 2$
.
Symbols:
${\mathit{Ps}}_{n}^{m}(z,{\gamma}^{2})$
: spheroidal wave function of complex argument
,
$x$
: real variable
and
$y$
: real variable
Permalink:
http://dlmf.nist.gov/30.7.F17
Encodings:
VRML
,
X3D
,
pdf
,
png
See also:
Annotations for
30.7(iv)
Visualization Help
Figure 30.7.18:
$|{\mathit{Ps}}_{1}^{1}(x+\mathrm{i}y,4)|$
,
$-2\le x\le 2$
,
$-2\le y\le 2$
.
Symbols:
${\mathit{Ps}}_{n}^{m}(z,{\gamma}^{2})$
: spheroidal wave function of complex argument
,
$x$
: real variable
and
$y$
: real variable
Permalink:
http://dlmf.nist.gov/30.7.F18
Encodings:
VRML
,
X3D
,
pdf
,
png
See also:
Annotations for
30.7(iv)
Visualization Help
Figure 30.7.19:
$|{\mathit{Ps}}_{1}^{1}(x+\mathrm{i}y,-4)|$
,
$-2\le x\le 2$
,
$-2\le y\le 2$
.
Symbols:
${\mathit{Ps}}_{n}^{m}(z,{\gamma}^{2})$
: spheroidal wave function of complex argument
,
$x$
: real variable
and
$y$
: real variable
Permalink:
http://dlmf.nist.gov/30.7.F19
Encodings:
VRML
,
X3D
,
pdf
,
png
See also:
Annotations for
30.7(iv)
Visualization Help
Figure 30.7.20:
$|{\mathit{Qs}}_{0}^{0}(x+\mathrm{i}y,4)|$
,
$-2\le x\le 2$
,
$-2\le y\le 2$
.
Symbols:
${\mathit{Qs}}_{n}^{m}(z,{\gamma}^{2})$
: spheroidal wave function of complex argument
,
$x$
: real variable
and
$y$
: real variable
Permalink:
http://dlmf.nist.gov/30.7.F20
Encodings:
VRML
,
X3D
,
pdf
,
png
See also:
Annotations for
30.7(iv)
Visualization Help
Figure 30.7.21:
$|{\mathit{Qs}}_{0}^{0}(x+\mathrm{i}y,-4)|$
,
$-1.8\le x\le 1.8$
,
$-2\le y\le 2$
.
Symbols:
${\mathit{Qs}}_{n}^{m}(z,{\gamma}^{2})$
: spheroidal wave function of complex argument
,
$x$
: real variable
and
$y$
: real variable
Referenced by:
§30.7(iv)
Permalink:
http://dlmf.nist.gov/30.7.F21
Encodings:
VRML
,
X3D
,
pdf
,
png
See also:
Annotations for
30.7(iv)