About the Project

Euler–Tricomi equation

AdvancedHelp

(0.003 seconds)

9 matching pages

1: 9.16 Physical Applications
A quite different application is made in the study of the diffraction of sound pulses by a circular cylinder (Friedlander (1958)). … The investigation of the transition between subsonic and supersonic of a two-dimensional gas flow leads to the EulerTricomi equation (Landau and Lifshitz (1987)). …
2: 8.15 Sums
8.15.1 γ ( a , λ x ) = λ a k = 0 γ ( a + k , x ) ( 1 λ ) k k ! .
8.15.2 a k = 1 ( e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) + e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) ) = ζ ( a , z + h ) + z a + 1 a + 1 + ( h 1 2 ) z a , h [ 0 , 1 ] .
3: Bibliography C
  • R. Campbell (1955) Théorie Générale de L’Équation de Mathieu et de quelques autres Équations différentielles de la mécanique. Masson et Cie, Paris (French).
  • L. Carlitz (1954b) A note on Euler numbers and polynomials. Nagoya Math. J. 7, pp. 35–43.
  • B. C. Carlson (1998) Elliptic Integrals: Symmetry and Symbolic Integration. In Tricomi’s Ideas and Contemporary Applied Mathematics (Rome/Turin, 1997), Atti dei Convegni Lincei, Vol. 147, pp. 161–181.
  • T. W. Chaundy (1969) Elementary Differential Equations. Clarendon Press, Oxford.
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1990b) On a Tricomi series representation for the generalized exponential integral. Internat. J. Comput. Math. 31, pp. 257–262.
  • 4: 8.11 Asymptotic Approximations and Expansions
    This expansion is absolutely convergent for all finite z , and it can also be regarded as a generalized asymptotic expansion (§2.1(v)) of γ ( a , z ) as a in | ph a | π δ . …
    8.11.6 γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , 0 < λ < 1 , | ph a | π 2 δ .
    8.11.7 Γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , λ > 1 , | ph a | 3 π 2 δ .
    See Tricomi (1950b) for these approximations, together with higher terms and extensions to complex variables. …
    8.11.12 Γ ( z , z ) z z 1 e z ( π 2 z 1 2 1 3 + 2 π 24 z 1 2 4 135 z + 2 π 576 z 3 2 + 8 2835 z 2 + ) , | ph z | 2 π δ .
    5: 13.11 Series
    13.11.1 M ( a , b , z ) = Γ ( a 1 2 ) e 1 2 z ( 1 4 z ) 1 2 a s = 0 ( 2 a 1 ) s ( 2 a b ) s ( b ) s s ! ( a 1 2 + s ) I a 1 2 + s ( 1 2 z ) , a + 1 2 , b 0 , 1 , 2 , ,
    13.11.2 M ( a , b , z ) = Γ ( b a 1 2 ) e 1 2 z ( 1 4 z ) a b + 1 2 s = 0 ( 1 ) s ( 2 b 2 a 1 ) s ( b 2 a ) s ( b a 1 2 + s ) ( b ) s s ! I b a 1 2 + s ( 1 2 z ) , b a + 1 2 , b 0 , 1 , 2 , .
    13.11.3 𝐌 ( a , b , z ) = e 1 2 z s = 0 A s ( b 2 a ) 1 2 ( 1 b s ) ( 1 2 z ) 1 2 ( 1 b + s ) J b 1 + s ( 2 z ( b 2 a ) ) ,
    For other series expansions see Tricomi (1954, §1.8), Hansen (1975, §§66 and 87), Prudnikov et al. (1990, §6.6), López and Temme (2010a) and López and Pérez Sinusía (2014). …
    6: Bibliography E
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1954a) Tables of Integral Transforms. Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1954b) Tables of Integral Transforms. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1953a) Higher Transcendental Functions. Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1953b) Higher Transcendental Functions. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1955) Higher Transcendental Functions. Vol. III. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • 7: 13.9 Zeros
    13.9.9 z = ± ( 2 n + a ) π i + ln ( Γ ( a ) Γ ( b a ) ( ± 2 n π i ) b 2 a ) + O ( n 1 ln n ) ,
    13.9.11 T ( a , b ) = a + 1 , a < 0 , Γ ( a ) Γ ( a b + 1 ) > 0 ,
    13.9.12 T ( a , b ) = a , a < 0 , Γ ( a ) Γ ( a b + 1 ) < 0 ,
    13.9.16 a = n 2 π z n 2 z π 2 + 1 2 b + 1 4 + z 2 ( 1 3 4 π 2 ) + z ( b 1 ) 2 + 1 4 4 π z n + O ( 1 n ) ,
    8: Bibliography T
  • F. G. Tricomi (1950a) Über die Abzählung der Nullstellen der konfluenten hypergeometrischen Funktionen. Math. Z. 52, pp. 669–675 (German).
  • F. G. Tricomi (1950b) Asymptotische Eigenschaften der unvollständigen Gammafunktion. Math. Z. 53, pp. 136–148 (German).
  • F. G. Tricomi (1947) Sugli zeri delle funzioni di cui si conosce una rappresentazione asintotica. Ann. Mat. Pura Appl. (4) 26, pp. 283–300 (Italian).
  • F. G. Tricomi (1951) Funzioni Ellittiche. 2nd edition, Nicola Zanichelli Editore, Bologna (Italian).
  • F. G. Tricomi (1954) Funzioni ipergeometriche confluenti. Edizioni Cremonese, Roma (Italian).
  • 9: Bibliography
  • A. S. Abdullaev (1985) Asymptotics of solutions of the generalized sine-Gordon equation, the third Painlevé equation and the d’Alembert equation. Dokl. Akad. Nauk SSSR 280 (2), pp. 265–268 (Russian).
  • V. È. Adler (1994) Nonlinear chains and Painlevé equations. Phys. D 73 (4), pp. 335–351.
  • G. Allasia and R. Besenghi (1987a) Numerical computation of Tricomi’s psi function by the trapezoidal rule. Computing 39 (3), pp. 271–279.
  • F. M. Arscott (1967) The Whittaker-Hill equation and the wave equation in paraboloidal co-ordinates. Proc. Roy. Soc. Edinburgh Sect. A 67, pp. 265–276.
  • U. M. Ascher and L. R. Petzold (1998) Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.