About the Project

.2018年世界杯决赛裁判_『welcom_』1998年世界杯怎么了_w6n2c9o_2022年11月29日5时2分36秒_6ogsggucg_cc

AdvancedHelp

(0.002 seconds)

21—30 of 161 matching pages

21: Bibliography B
  • R. Barakat (1961) Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials. Math. Comp. 15 (73), pp. 7–11.
  • B. C. Berndt, S. Bhargava, and F. G. Garvan (1995) Ramanujan’s theories of elliptic functions to alternative bases. Trans. Amer. Math. Soc. 347 (11), pp. 4163–4244.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • A. Bhattacharyya and L. Shafai (1988) Theoretical and experimental investigation of the elliptical annual ring antenna. IEEE Trans. Antennas and Propagation 36 (11), pp. 1526–1530.
  • R. L. Bishop (1981) Rainbow over Woolsthorpe Manor. Notes and Records Roy. Soc. London 36 (1), pp. 3–11 (1 plate).
  • 22: Bibliography F
  • V. N. Faddeyeva and N. M. Terent’ev (1961) Tables of Values of the Function w ( z ) = e z 2 ( 1 + 2 i π 1 / 2 0 z e t 2 𝑑 t ) for Complex Argument. Edited by V. A. Fok; translated from the Russian by D. G. Fry. Mathematical Tables Series, Vol. 11, Pergamon Press, Oxford.
  • N. Fleury and A. Turbiner (1994) Polynomial relations in the Heisenberg algebra. J. Math. Phys. 35 (11), pp. 6144–6149.
  • A. S. Fokas and M. J. Ablowitz (1982) On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23 (11), pp. 2033–2042.
  • P. J. Forrester and N. S. Witte (2004) Application of the τ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.
  • L. W. Fullerton (1972) Algorithm 435: Modified incomplete gamma function. Comm. ACM 15 (11), pp. 993–995.
  • 23: Bibliography W
  • R. J. Wells (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spect. and Rad. Transfer 62 (1), pp. 29–48.
  • E. T. Whittaker and G. N. Watson (1927) A Course of Modern Analysis. 4th edition, Cambridge University Press.
  • J. A. Wilson (1980) Some hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 11 (4), pp. 690–701.
  • G. Wolf (2008) On the asymptotic behavior of the Fourier coefficients of Mathieu functions. J. Res. Nat. Inst. Standards Tech. 113 (1), pp. 11–15.
  • E. M. Wright (1940b) The generalized Bessel function of order greater than one. Quart. J. Math., Oxford Ser. 11, pp. 36–48.
  • 24: 1.3 Determinants, Linear Operators, and Spectral Expansions
    1.3.1 det [ a j k ] = | a 11 a 12 a 21 a 22 | = a 11 a 22 a 12 a 21 .
    1.3.2 det [ a j k ] = | a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 | = a 11 | a 22 a 23 a 32 a 33 | a 12 | a 21 a 23 a 31 a 33 | + a 13 | a 21 a 22 a 31 a 32 | = a 11 a 22 a 33 a 11 a 23 a 32 a 12 a 21 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 .
    1.3.8 | a 11 a 12 a 21 a 22 | 2 ( a 11 2 + a 12 2 ) ( a 21 2 + a 22 2 ) ,
    For further information see Whittaker and Watson (1927, pp. 36–40) and Magnus and Winkler (1966, §2.3). …
    25: Bibliography S
  • R. Shail (1980) On integral representations for Lamé and other special functions. SIAM J. Math. Anal. 11 (4), pp. 702–723.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • A. Sidi (2010) A simple approach to asymptotic expansions for Fourier integrals of singular functions. Appl. Math. Comput. 216 (11), pp. 3378–3385.
  • R. Sips (1965) Représentation asymptotique de la solution générale de l’équation de Mathieu-Hill. Acad. Roy. Belg. Bull. Cl. Sci. (5) 51 (11), pp. 1415–1446.
  • K. Soni (1980) Exact error terms in the asymptotic expansion of a class of integral transforms. I. Oscillatory kernels. SIAM J. Math. Anal. 11 (5), pp. 828–841.
  • 26: 34.7 Basic Properties: 9 j Symbol
    34.7.1 { j 11 j 12 j 13 j 21 j 22 j 13 j 31 j 31 0 } = ( 1 ) j 12 + j 21 + j 13 + j 31 ( ( 2 j 13 + 1 ) ( 2 j 31 + 1 ) ) 1 2 { j 11 j 12 j 13 j 22 j 21 j 31 } .
    34.7.2 j 12 j 34 ( 2 j 12 + 1 ) ( 2 j 34 + 1 ) ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } = δ j 13 , j 13 δ j 24 , j 24 .
    34.7.3 j 13 j 24 ( 1 ) 2 j 2 + j 24 + j 23 j 34 ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 3 j 13 j 4 j 2 j 24 j 14 j 23 j } = { j 1 j 2 j 12 j 4 j 3 j 34 j 14 j 23 j } .
    34.7.4 ( j 13 j 23 j 33 m 13 m 23 m 33 ) { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = m r 1 , m r 2 , r = 1 , 2 , 3 ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) .
    34.7.5 j ( 2 j + 1 ) { j 11 j 12 j j 21 j 22 j 23 j 31 j 32 j 33 } { j 11 j 12 j j 23 j 33 j } = ( 1 ) 2 j { j 21 j 22 j 23 j 12 j j 32 } { j 31 j 32 j 33 j j 11 j 21 } .
    27: Bibliography Y
  • H. A. Yamani and W. P. Reinhardt (1975) L -squared discretizations of the continuum: Radial kinetic energy and the Coulomb Hamiltonian. Phys. Rev. A 11 (4), pp. 1144–1156.
  • T. Yoshida (1995) Computation of Kummer functions U ( a , b , x ) for large argument x by using the τ -method. Trans. Inform. Process. Soc. Japan 36 (10), pp. 2335–2342 (Japanese).
  • 28: Bibliography C
  • L. Carlitz (1960) Note on Nörlund’s polynomial B n ( z ) . Proc. Amer. Math. Soc. 11 (3), pp. 452–455.
  • P. A. Clarkson (2003b) The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (11), pp. 5350–5374.
  • J. A. Cochran (1963) Further formulas for calculating approximate values of the zeros of certain combinations of Bessel functions. IEEE Trans. Microwave Theory Tech. 11 (6), pp. 546–547.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • F. Cooper, A. Khare, and A. Saxena (2006) Exact elliptic compactons in generalized Korteweg-de Vries equations. Complexity 11 (6), pp. 30–34.
  • 29: Bibliography M
  • W. Magnus, F. Oberhettinger, and R. P. Soni (1966) Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edition, Springer-Verlag, New York-Berlin.
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • L. Moser and M. Wyman (1958b) Stirling numbers of the second kind. Duke Math. J. 25 (1), pp. 29–43.
  • D. Müller, B. G. Kelly, and J. J. O’Brien (1994) Spheroidal eigenfunctions of the tidal equation. Phys. Rev. Lett. 73 (11), pp. 1557–1560.
  • L. A. Muraveĭ (1976) Zeros of the function A i ( z ) σ A i ( z ) . Differential Equations 11, pp. 797–811.
  • 30: 26.6 Other Lattice Path Numbers
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    1 1 3 5 7 9 11 13 15 17 19 21
    5 1 11 61 231 681 1683 3653 7183 13073 22363 36365
    Table 26.6.2: Motzkin numbers M ( n ) .
    n M ( n ) n M ( n ) n M ( n ) n M ( n ) n M ( n )
    3 4 7 127 11 5798 15 3 10572 19 181 99284
    Table 26.6.3: Narayana numbers N ( n , k ) .
    n k
    9 0 1 36 336 1176 1764 1176 336 36 1
    Table 26.6.4: Schröder numbers r ( n ) .
    n r ( n ) n r ( n ) n r ( n ) n r ( n ) n r ( n )
    3 22 7 8558 11 52 93446 15 39376 03038 19 323 67243 17174