DLMF
Index
Notations
Search
Help?
Citing
Customize
Annotate
UnAnnotate
About the Project
10
Bessel Functions
Modified Bessel Functions
10.34
Analytic Continuation
10.36
Other Differential Equations
§10.35
Generating Function and Associated Series
ⓘ
Keywords:
Bessel Functions
,
Jacobi–Anger expansions
,
generating function
,
modified Bessel functions
Notes:
For (
10.35.1
) replace
z
and
t
in (
10.12.1
) by
i
z
and
−
i
t
, respectively, and apply (
10.27.6
). (
10.35.2
)–(
10.35.6
) are obtained by setting
t
=
e
i
θ
,
t
=
−
i
e
i
θ
, together with other straightforward substitutions.
Permalink:
http://dlmf.nist.gov/10.35
Addition (effective with 1.0.7):
Equations (
10.35.2
) and (
10.35.3
) have been identified as Jacobi–Anger expansions. Corresponding entries have been made in the index.
Suggested 2012-12-28 by Alexander Barnett
See also:
Annotations for
Ch.10
For
z
∈
ℂ
and
t
∈
ℂ
∖
{
0
}
,
10.35.1
e
1
2
z
(
t
+
t
−
1
)
=
∑
m
=
−
∞
∞
t
m
I
m
(
z
)
.
ⓘ
Symbols:
e
: base of natural logarithm
,
I
ν
(
z
)
: modified Bessel function of the first kind
,
m
: integer
and
z
: complex variable
A&S Ref:
9.6.33
Referenced by:
§10.35
Permalink:
http://dlmf.nist.gov/10.35.E1
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§10.35
and
Ch.10
Jacobi–Anger expansions: for
z
,
θ
∈
ℂ
,
10.35.2
e
z
cos
θ
=
I
0
(
z
)
+
2
∑
k
=
1
∞
I
k
(
z
)
cos
(
k
θ
)
,
ⓘ
Symbols:
cos
z
: cosine function
,
e
: base of natural logarithm
,
I
ν
(
z
)
: modified Bessel function of the first kind
,
k
: nonnegative integer
and
z
: complex variable
A&S Ref:
9.6.34
Referenced by:
§10.35
Permalink:
http://dlmf.nist.gov/10.35.E2
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§10.35
and
Ch.10
10.35.3
e
z
sin
θ
=
I
0
(
z
)
+
2
∑
k
=
0
∞
(
−
1
)
k
I
2
k
+
1
(
z
)
sin
(
(
2
k
+
1
)
θ
)
+
2
∑
k
=
1
∞
(
−
1
)
k
I
2
k
(
z
)
cos
(
2
k
θ
)
.
ⓘ
Symbols:
cos
z
: cosine function
,
e
: base of natural logarithm
,
I
ν
(
z
)
: modified Bessel function of the first kind
,
sin
z
: sine function
,
k
: nonnegative integer
and
z
: complex variable
A&S Ref:
9.6.35
Referenced by:
§10.35
Permalink:
http://dlmf.nist.gov/10.35.E3
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§10.35
and
Ch.10
10.35.4
1
=
I
0
(
z
)
−
2
I
2
(
z
)
+
2
I
4
(
z
)
−
2
I
6
(
z
)
+
⋯
,
ⓘ
Symbols:
I
ν
(
z
)
: modified Bessel function of the first kind
and
z
: complex variable
A&S Ref:
9.6.36
Permalink:
http://dlmf.nist.gov/10.35.E4
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§10.35
and
Ch.10
10.35.5
e
±
z
=
I
0
(
z
)
±
2
I
1
(
z
)
+
2
I
2
(
z
)
±
2
I
3
(
z
)
+
⋯
,
ⓘ
Symbols:
e
: base of natural logarithm
,
I
ν
(
z
)
: modified Bessel function of the first kind
and
z
: complex variable
A&S Ref:
9.6.37,9.6.38
Permalink:
http://dlmf.nist.gov/10.35.E5
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§10.35
and
Ch.10
10.35.6
cosh
z
=
I
0
(
z
)
+
2
I
2
(
z
)
+
2
I
4
(
z
)
+
2
I
6
(
z
)
+
…
,
sinh
z
=
2
I
1
(
z
)
+
2
I
3
(
z
)
+
2
I
5
(
z
)
+
…
.
ⓘ
Symbols:
cosh
z
: hyperbolic cosine function
,
sinh
z
: hyperbolic sine function
,
I
ν
(
z
)
: modified Bessel function of the first kind
and
z
: complex variable
A&S Ref:
9.6.39, 9.6.40
Referenced by:
§10.35
Permalink:
http://dlmf.nist.gov/10.35.E6
Encodings:
TeX
,
TeX
,
pMML
,
pMML
,
png
,
png
See also:
Annotations for
§10.35
and
Ch.10