About the Project

Legendre polynomials

AdvancedHelp

(0.004 seconds)

1—10 of 69 matching pages

1: 18.3 Definitions
§18.3 Definitions
Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, normalizations, leading coefficients, and parameter constraints. …
Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
Legendre P n ( x ) ( 1 , 1 ) 1 2 / ( 2 n + 1 ) 2 n ( 1 2 ) n / n ! 0
Shifted Legendre P n * ( x ) ( 0 , 1 ) 1 1 / ( 2 n + 1 ) 2 2 n ( 1 2 ) n / n ! 1 2 n
For exact values of the coefficients of the Jacobi polynomials P n ( α , β ) ( x ) , the ultraspherical polynomials C n ( λ ) ( x ) , the Chebyshev polynomials T n ( x ) and U n ( x ) , the Legendre polynomials P n ( x ) , the Laguerre polynomials L n ( x ) , and the Hermite polynomials H n ( x ) , see Abramowitz and Stegun (1964, pp. 793–801). … Legendre polynomials are special cases of Legendre functions, Ferrers functions, and associated Legendre functions (§14.7(i)). …
2: 18.30 Associated OP’s
Associated Legendre Polynomials
18.30.6 P n ( x ; c ) = P n ( 0 , 0 ) ( x ; c ) , n = 0 , 1 , .
18.30.7 P n ( x ; c ) = = 0 n c + c P ( x ) P n ( x ) .
(These polynomials are not to be confused with associated Legendre functions §14.3(ii).) For further results on associated Legendre polynomials see Chihara (1978, Chapter VI, §12); on associated Jacobi polynomials, see Wimp (1987) and Ismail and Masson (1991). …
3: 18.41 Tables
For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. … For P n ( x ) , L n ( x ) , and H n ( x ) see §3.5(v). …
4: 10.59 Integrals
10.59.1 e i b t 𝗃 n ( t ) d t = { π i n P n ( b ) , 1 < b < 1 , 1 2 π ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
where P n is the Legendre polynomial18.3). …
5: 10.60 Sums
Then with P n again denoting the Legendre polynomial of degree n ,
10.60.1 cos w w = n = 0 ( 2 n + 1 ) 𝗃 n ( v ) 𝗒 n ( u ) P n ( cos α ) , | v e ± i α | < | u | .
10.60.2 sin w w = n = 0 ( 2 n + 1 ) 𝗃 n ( v ) 𝗃 n ( u ) P n ( cos α ) .
10.60.7 e i z cos α = n = 0 ( 2 n + 1 ) i n 𝗃 n ( z ) P n ( cos α ) ,
10.60.8 e z cos α = n = 0 ( 2 n + 1 ) 𝗂 n ( 1 ) ( z ) P n ( cos α ) ,
6: 14.7 Integer Degree and Order
§14.7(i) μ = 0
where P n ( x ) is the Legendre polynomial of degree n . For additional properties of P n ( x ) see Chapter 18. …
14.7.4 W n 1 ( x ) = k = 1 n 1 k P k 1 ( x ) P n k ( x ) .
14.7.11 P n m ( x ) = ( x 2 1 ) m / 2 d m d x m P n ( x ) ,
7: 10.54 Integral Representations
For the Legendre polynomial P n and the associated Legendre function Q n see §§18.3 and 14.21(i), with μ = 0 and ν = n . …
8: 18.4 Graphics
See accompanying text
Figure 18.4.4: Legendre polynomials P n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
9: 18.13 Continued Fractions
Legendre
P n ( x ) is the denominator of the n th approximant to: …
10: 18.17 Integrals
Legendre
Legendre
Legendre
Legendre
Legendre