About the Project

Legendre polynomials

AdvancedHelp

(0.006 seconds)

1—10 of 71 matching pages

1: 18.3 Definitions
§18.3 Definitions
Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
Legendre P n ( x ) ( 1 , 1 ) 1 2 / ( 2 n + 1 ) 2 n ( 1 2 ) n / n ! 0
Shifted Legendre P n ( x ) ( 0 , 1 ) 1 1 / ( 2 n + 1 ) 2 2 n ( 1 2 ) n / n ! 1 2 n
For expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). … Legendre polynomials are special cases of Legendre functions, Ferrers functions, and associated Legendre functions (§14.7(i)). …
2: 18.41 Tables
For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. … For P n ( x ) , L n ( x ) , and H n ( x ) see §3.5(v). …
3: 10.59 Integrals
10.59.1 e i b t 𝗃 n ( t ) d t = { π i n P n ( b ) , 1 < b < 1 , 1 2 π ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
where P n is the Legendre polynomial18.3). …
4: 10.60 Sums
Then with P n again denoting the Legendre polynomial of degree n ,
10.60.1 cos w w = n = 0 ( 2 n + 1 ) 𝗃 n ( v ) 𝗒 n ( u ) P n ( cos α ) , | v e ± i α | < | u | .
10.60.2 sin w w = n = 0 ( 2 n + 1 ) 𝗃 n ( v ) 𝗃 n ( u ) P n ( cos α ) .
10.60.7 e i z cos α = n = 0 ( 2 n + 1 ) i n 𝗃 n ( z ) P n ( cos α ) ,
10.60.8 e z cos α = n = 0 ( 2 n + 1 ) 𝗂 n ( 1 ) ( z ) P n ( cos α ) ,
5: 14.7 Integer Degree and Order
§14.7(i) μ = 0
where P n ( x ) is the Legendre polynomial of degree n . For additional properties of P n ( x ) see Chapter 18. …
14.7.4 W n 1 ( x ) = k = 1 n 1 k P k 1 ( x ) P n k ( x ) .
14.7.13 P n ( x ) = 1 2 n n ! d n d x n ( x 2 1 ) n ,
6: 10.54 Integral Representations
For the Legendre polynomial P n and the associated Legendre function Q n see §§18.3 and 14.21(i), with μ = 0 and ν = n . …
7: 18.4 Graphics
See accompanying text
Figure 18.4.4: Legendre polynomials P n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
8: 18.6 Symmetry, Special Values, and Limits to Monomials
For Jacobi, ultraspherical, Chebyshev, Legendre, and Hermite polynomials, see Table 18.6.1. …
Table 18.6.1: Classical OP’s: symmetry and special values.
p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
P n ( x ) ( 1 ) n P n ( x ) 1 ( 1 ) n ( 1 2 ) n / n ! 2 ( 1 ) n ( 1 2 ) n + 1 / n !
9: 18.10 Integral Representations
Legendre
18.10.2 P n ( cos θ ) = 2 1 2 π 0 θ cos ( ( n + 1 2 ) ϕ ) ( cos ϕ cos θ ) 1 2 d ϕ , 0 < θ < π .
18.10.5 P n ( cos θ ) = 1 π 0 π ( cos θ + i sin θ cos ϕ ) n d ϕ .
Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
P n ( x ) 1 z 1 ( 1 2 x z + z 2 ) 1 2 0
P n ( x ) 1 z 2 1 2 ( z x ) 1 x
10: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
7 P n ( x ) 1 x 2 2 x 0 n ( n + 1 )