About the Project

Chebyshev polynomials

AdvancedHelp

(0.005 seconds)

1—10 of 47 matching pages

1: 18.3 Definitions
§18.3 Definitions
Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
Chebyshev of second kind U n ( x ) ( 1 , 1 ) ( 1 x 2 ) 1 2 1 2 π 2 n 0
Shifted Chebyshev of second kind U n ( x ) ( 0 , 1 ) ( x x 2 ) 1 2 1 8 π 2 2 n 1 2 n
In addition to the orthogonal property given by Table 18.3.1, the Chebyshev polynomials T n ( x ) , n = 0 , 1 , , N , are orthogonal on the discrete point set comprising the zeros x N + 1 , n , n = 1 , 2 , , N + 1 , of T N + 1 ( x ) : … For another version of the discrete orthogonality property of the polynomials T n ( x ) see (3.11.9). …
2: 18.41 Tables
For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. Abramowitz and Stegun (1964, Tables 22.4, 22.6, 22.11, and 22.13) tabulates T n ( x ) , U n ( x ) , L n ( x ) , and H n ( x ) for n = 0 ( 1 ) 12 . The ranges of x are 0.2 ( .2 ) 1 for T n ( x ) and U n ( x ) , and 0.5 , 1 , 3 , 5 , 10 for L n ( x ) and H n ( x ) . …
3: 18.7 Interrelations and Limit Relations
Chebyshev, Ultraspherical, and Jacobi
18.7.7 T n ( x ) = T n ( 2 x 1 ) ,
18.7.8 U n ( x ) = U n ( 2 x 1 ) .
18.7.17 U 2 n ( x ) = W n ( 2 x 2 1 ) ,
18.7.18 T 2 n + 1 ( x ) = x V n ( 2 x 2 1 ) .
4: 18.9 Recurrence Relations and Derivatives
Table 18.9.1: Classical OP’s: recurrence relations (18.9.1).
p n ( x ) A n B n C n
U n ( x ) 2 0 1
U n ( x ) 4 2 1
18.9.9 T n ( x ) = 1 2 ( U n ( x ) U n 2 ( x ) ) ,
18.9.12 T n + 1 ( x ) + T n ( x ) = ( 1 + x ) V n ( x ) .
Identities similar to (18.9.11) and (18.9.12) involving W n ( x ) and T n ( x ) can be obtained using rows 4 and 7 in Table 18.6.1. …
5: 18.1 Notation
  • Chebyshev of first, second, third, and fourth kinds: T n ( x ) , U n ( x ) , V n ( x ) , W n ( x ) .

  • Shifted Chebyshev of first and second kinds: T n ( x ) , U n ( x ) .

  • Nor do we consider the shifted Jacobi polynomials: …
    C n ( x ) = 2 T n ( 1 2 x ) ,
    S n ( x ) = U n ( 1 2 x ) .
    6: 18.6 Symmetry, Special Values, and Limits to Monomials
    Table 18.6.1: Classical OP’s: symmetry and special values.
    p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
    T n ( x ) ( 1 ) n T n ( x ) 1 ( 1 ) n ( 1 ) n ( 2 n + 1 )
    U n ( x ) ( 1 ) n U n ( x ) n + 1 ( 1 ) n ( 1 ) n ( 2 n + 2 )
    V n ( x ) ( 1 ) n W n ( x ) 1 ( 1 ) n ( 1 ) n ( 2 n + 2 )
    W n ( x ) ( 1 ) n V n ( x ) 2 n + 1 ( 1 ) n ( 1 ) n ( 2 n + 2 )
    7: 18.5 Explicit Representations
    T 0 ( x ) = 1 ,
    T 1 ( x ) = x ,
    T 2 ( x ) = 2 x 2 1 ,
    T 3 ( x ) = 4 x 3 3 x ,
    U 0 ( x ) = 1 ,
    8: 29.15 Fourier Series and Chebyshev Series
    §29.15(ii) Chebyshev Series
    The Chebyshev polynomial T of the first kind (§18.3) satisfies cos ( p ϕ ) = T p ( cos ϕ ) . … Using also sin ( ( p + 1 ) ϕ ) = ( sin ϕ ) U p ( cos ϕ ) , with U denoting the Chebyshev polynomial of the second kind (§18.3), we obtain
    9: 3.11 Approximation Techniques
    The Chebyshev polynomials T n are given by …
    3.11.7 T n + 1 ( x ) 2 x T n ( x ) + T n 1 ( x ) = 0 , n = 1 , 2 , ,
    with initial values T 0 ( x ) = 1 , T 1 ( x ) = x . … For the expansion (3.11.11), numerical values of the Chebyshev polynomials T n ( x ) can be generated by application of the recurrence relation (3.11.7). …Let c n T n ( x ) be the last term retained in the truncated series. …
    10: 18.8 Differential Equations
    Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
    # f ( x ) A ( x ) B ( x ) C ( x ) λ n
    5 T n ( x ) 1 x 2 x 0 n 2
    6 U n ( x ) 1 x 2 3 x 0 n ( n + 2 )