# ultraspherical polynomials

(0.003 seconds)

## 1—10 of 32 matching pages

##### 1: 18.3 Definitions
###### §18.3 Definitions
This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. For explicit power series coefficients up to $n=12$ for these polynomials and for coefficients up to $n=6$ for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). …
##### 2: 18.6 Symmetry, Special Values, and Limits to Monomials
For Jacobi, ultraspherical, Chebyshev, Legendre, and Hermite polynomials, see Table 18.6.1. …
###### §18.6(ii) Limits to Monomials
18.6.4 $\lim_{\lambda\to\infty}\frac{C^{(\lambda)}_{n}\left(x\right)}{C^{(\lambda)}_{n% }\left(1\right)}=x^{n},$
##### 3: 18.7 Interrelations and Limit Relations
18.7.1 $C^{(\lambda)}_{n}\left(x\right)=\frac{{\left(2\lambda\right)_{n}}}{{\left(% \lambda+\frac{1}{2}\right)_{n}}}P^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}_% {n}\left(x\right),$
18.7.15 $C^{(\lambda)}_{2n}\left(x\right)=\frac{{\left(\lambda\right)_{n}}}{{\left(% \tfrac{1}{2}\right)_{n}}}P^{(\lambda-\frac{1}{2},-\frac{1}{2})}_{n}\left(2x^{2% }-1\right),$
18.7.25 $\lim_{\lambda\to 0}\frac{n+\lambda}{\lambda}C^{(\lambda)}_{n}\left(x\right)=% \begin{cases}1,&\text{n=0,}\\ 2T_{n}\left(x\right),&\text{n=1,2,\dots.}\end{cases}$
##### 4: 18.9 Recurrence Relations and Derivatives
18.9.7 $(n+\lambda)C^{(\lambda)}_{n}\left(x\right)=\lambda\left(C^{(\lambda+1)}_{n}% \left(x\right)-C^{(\lambda+1)}_{n-2}\left(x\right)\right),$
18.9.8 $4\lambda(n+\lambda+1)(1-x^{2})C^{(\lambda+1)}_{n}\left(x\right)=-(n+1)(n+2)C^{% (\lambda)}_{n+2}\left(x\right)+(n+2\lambda)(n+2\lambda+1)C^{(\lambda)}_{n}% \left(x\right).$
###### Ultraspherical
18.9.19 $\frac{\mathrm{d}}{\mathrm{d}x}C^{(\lambda)}_{n}\left(x\right)=2\lambda C^{(% \lambda+1)}_{n-1}\left(x\right),$
18.9.20 $\frac{\mathrm{d}}{\mathrm{d}x}\left((1-x^{2})^{\lambda-\frac{1}{2}}C^{(\lambda% )}_{n}\left(x\right)\right)=-\frac{(n+1)(n+2\lambda-1)}{2(\lambda-1)}{(1-x^{2}% )^{\lambda-\frac{3}{2}}}C^{(\lambda-1)}_{n+1}\left(x\right).$
##### 5: 18.1 Notation
• Ultraspherical (or Gegenbauer): $C^{(\lambda)}_{n}\left(x\right)$.

• Continuous $q$-Ultraspherical: $C_{n}\left(x;\beta\,|\,q\right)$.

• In Szegő (1975, §4.7) the ultraspherical polynomials $C^{(\lambda)}_{n}\left(x\right)$ are denoted by $P_{n}^{(\lambda)}(x)$. The ultraspherical polynomials will not be considered for $\lambda=0$. They are defined in the literature by $C^{(0)}_{0}\left(x\right)=1$ and …
##### 6: 18.10 Integral Representations
###### Ultraspherical
18.10.1 $\frac{P^{(\alpha,\alpha)}_{n}\left(\cos\theta\right)}{P^{(\alpha,\alpha)}_{n}% \left(1\right)}=\frac{C^{(\alpha+\frac{1}{2})}_{n}\left(\cos\theta\right)}{C^{% (\alpha+\frac{1}{2})}_{n}\left(1\right)}=\frac{2^{\alpha+\frac{1}{2}}\Gamma% \left(\alpha+1\right)}{{\pi}^{\frac{1}{2}}\Gamma\left(\alpha+\frac{1}{2}\right% )}(\sin\theta)^{-2\alpha}\int_{0}^{\theta}\frac{\cos\left((n+\alpha+\tfrac{1}{% 2})\phi\right)}{(\cos\phi-\cos\theta)^{-\alpha+\frac{1}{2}}}\,\mathrm{d}\phi,$ $0<\theta<\pi$, $\alpha>-\tfrac{1}{2}$.
###### Ultraspherical
18.10.4 ${\frac{P^{(\alpha,\alpha)}_{n}\left(\cos\theta\right)}{P^{(\alpha,\alpha)}_{n}% \left(1\right)}=\frac{C^{(\alpha+\frac{1}{2})}_{n}\left(\cos\theta\right)}{C^{% (\alpha+\frac{1}{2})}_{n}\left(1\right)}}=\frac{\Gamma\left(\alpha+1\right)}{{% \pi}^{\frac{1}{2}}\Gamma{(\alpha+\tfrac{1}{2})}}\*{\int_{0}^{\pi}(\cos\theta+i% \sin\theta\cos\phi)^{n}\*(\sin\phi)^{2\alpha}\,\mathrm{d}\phi},$ $\alpha>-\frac{1}{2}$.
##### 7: 18.18 Sums
###### Ultraspherical
18.18.30 $\sum_{\ell=0}^{n}\frac{\ell+2\lambda}{2\lambda}C^{(\lambda)}_{\ell}\left(x% \right)x^{n-\ell}=C^{(\lambda+1)}_{n}\left(x\right).$
##### 8: 18.17 Integrals
###### Ultraspherical
18.17.13 $\frac{x^{\frac{1}{2}n}(x-1)^{\lambda+\mu-\frac{1}{2}}}{\Gamma\left(\lambda+\mu% +\tfrac{1}{2}\right)}\frac{C^{(\lambda+\mu)}_{n}\left(x^{-\frac{1}{2}}\right)}% {C^{(\lambda+\mu)}_{n}\left(1\right)}=\int_{1}^{x}\frac{y^{\frac{1}{2}n}(y-1)^% {\lambda-\frac{1}{2}}}{\Gamma\left(\lambda+\tfrac{1}{2}\right)}\frac{C^{(% \lambda)}_{n}\left(y^{-\frac{1}{2}}\right)}{C^{(\lambda)}_{n}\left(1\right)}% \frac{(x-y)^{\mu-1}}{\Gamma\left(\mu\right)}\,\mathrm{d}y,$ $\mu>0$, $x>1$.
##### 10: 18.12 Generating Functions
###### Ultraspherical
18.12.4 $(1-2xz+z^{2})^{-\lambda}=\sum_{n=0}^{\infty}C^{(\lambda)}_{n}\left(x\right)z^{% n}=\sum_{n=0}^{\infty}\frac{{\left(2\lambda\right)_{n}}}{{\left(\lambda+\tfrac% {1}{2}\right)_{n}}}P^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}_{n}\left(x% \right)z^{n},$ $|z|<1$.
18.12.5 $\frac{1-xz}{(1-2xz+z^{2})^{\lambda+1}}=\sum_{n=0}^{\infty}\frac{n+2\lambda}{2% \lambda}C^{(\lambda)}_{n}\left(x\right)z^{n},$ $|z|<1$.
18.12.6 $\Gamma\left(\lambda+\tfrac{1}{2}\right){\mathrm{e}}^{z\cos\theta}(\tfrac{1}{2}% z\sin\theta)^{\frac{1}{2}-\lambda}J_{\lambda-\frac{1}{2}}\left(z\sin\theta% \right)=\sum_{n=0}^{\infty}\frac{C^{(\lambda)}_{n}\left(\cos\theta\right)}{{% \left(2\lambda\right)_{n}}}z^{n},$ $0\leq\theta\leq\pi$.