Fourier transform of ultraspherical polynomials
♦
5 matching pages ♦
(0.002 seconds)
5 matching pages
1: 18.17 Integrals
2: 18.3 Definitions
§18.3 Definitions
… ►This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. … ►For expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …For explicit power series coefficients up to for these polynomials and for coefficients up to for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). … ►It is also related to a discrete Fourier-cosine transform, see Britanak et al. (2007). …3: Bibliography S
…
►
Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms.
Math. Tables Aids Comput. 9 (52), pp. 164–177.
…
►
Numerical evaluation of spherical Bessel transforms via fast Fourier transforms.
J. Comput. Phys. 100 (2), pp. 294–296.
…
►
A Guide to Distribution Theory and Fourier Transforms.
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL.
…
►
An Introduction to Basic Fourier Series.
Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht.
…
►
On the relative extrema of ultraspherical polynomials.
Boll. Un. Mat. Ital. (3) 5, pp. 125–127.
…
4: 18.2 General Orthogonal Polynomials
…
►
Kernel Polynomials
… ►§18.2(vi) Zeros
… ►§18.2(vii) Quadratic Transformations
… ► … ►Sheffer Polynomials
…5: Bibliography L
…
►
Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions.
Comput. Phys. Comm. 99 (2-3), pp. 297–306.
…
►
An Introduction to Fourier Analysis and Generalised Functions.
Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York.
…
►
Inequalities for ultraspherical polynomials and the gamma function.
J. Approx. Theory 40 (2), pp. 115–120.
…
►
Bessel transforms and rational extrapolation.
Numer. Math. 47 (1), pp. 1–14.
…
►
Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature.
Math. Comp. 25 (113), pp. 87–104.
…