About the Project

Laguerre polynomials

AdvancedHelp

(0.008 seconds)

1—10 of 50 matching pages

1: 18.3 Definitions
§18.3 Definitions
The classical OP’s comprise the Jacobi, Laguerre and Hermite polynomials. …
Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
Laguerre L n ( α ) ( x ) ( 0 , ) e x x α Γ ( n + α + 1 ) / n ! ( 1 ) n / n ! n ( n + α ) α > 1
For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). …
2: 18.4 Graphics
See accompanying text
Figure 18.4.5: Laguerre polynomials L n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
See accompanying text
Figure 18.4.6: Laguerre polynomials L 3 ( α ) ( x ) , α = 0 , 1 , 2 , 3 , 4 . Magnify
See accompanying text
Figure 18.4.8: Laguerre polynomials L 3 ( α ) ( x ) , 0 α 3 , 0 x 10 . Magnify 3D Help
See accompanying text
Figure 18.4.9: Laguerre polynomials L 4 ( α ) ( x ) , 0 α 3 , 0 x 10 . Magnify 3D Help
3: 18.36 Miscellaneous Polynomials
§18.36(v) Non-Classical Laguerre Polynomials L n ( k ) ( x ) , k = 1 , 2
For the Laguerre polynomials L n ( α ) ( x ) this requires, omitting all strictly positive factors, … The resulting EOP’s, L ^ n ( k ) ( x ) , n = 1 , 2 , satisfy …
18.36.5 L ^ n ( k ) ( x ) = ( x + k + 1 ) L n 1 ( k ) ( x ) + L n 2 ( k ) ( x ) , n 1 ,
The y ( x ) = L ^ n ( k ) ( x ) satisfy a second order Sturm–Liouville eigenvalue problem of the type illustrated in Table 18.8.1, as satisfied by classical OP’s, but now with rational, rather than polynomial coefficients: …
4: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
8 L n ( α ) ( x ) x α + 1 x 0 n
9 e 1 2 x 2 x α + 1 2 L n ( α ) ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) x 2 4 n + 2 α + 2
10 e 1 2 x x 1 2 α L n ( α ) ( x ) x 1 1 4 x 1 4 α 2 x 1 n + 1 2 ( α + 1 )
11 e n 1 x x + 1 L n 1 ( 2 + 1 ) ( 2 n 1 x ) 1 0 2 x ( + 1 ) x 2 1 n 2
5: 18.41 Tables
For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. Abramowitz and Stegun (1964, Tables 22.4, 22.6, 22.11, and 22.13) tabulates T n ( x ) , U n ( x ) , L n ( x ) , and H n ( x ) for n = 0 ( 1 ) 12 . The ranges of x are 0.2 ( .2 ) 1 for T n ( x ) and U n ( x ) , and 0.5 , 1 , 3 , 5 , 10 for L n ( x ) and H n ( x ) . … For P n ( x ) , L n ( x ) , and H n ( x ) see §3.5(v). …
6: 18.14 Inequalities
Laguerre
Laguerre
18.14.12 ( L n ( α ) ( x ) ) 2 L n 1 ( α ) ( x ) L n + 1 ( α ) ( x ) , 0 x < , α 0 .
Laguerre
18.14.24 | L n ( α ) ( x n , 0 ) | < | L n ( α ) ( x n , 1 ) | < < | L n ( α ) ( x n , n 1 ) | .
7: 18.6 Symmetry, Special Values, and Limits to Monomials
Laguerre
18.6.1 L n ( α ) ( 0 ) = ( α + 1 ) n n ! .
§18.6(ii) Limits to Monomials
18.6.5 lim α L n ( α ) ( α x ) L n ( α ) ( 0 ) = ( 1 x ) n .
8: 18.18 Sums
Laguerre
18.18.10 L n ( α 1 + + α r + r 1 ) ( x 1 + + x r ) = m 1 + + m r = n L m 1 ( α 1 ) ( x 1 ) L m r ( α r ) ( x r ) .
18.18.12 L n ( α ) ( λ x ) L n ( α ) ( 0 ) = = 0 n ( n ) λ ( 1 λ ) n L ( α ) ( x ) L ( α ) ( 0 ) .
18.18.37 = 0 n L ( α ) ( x ) = L n ( α + 1 ) ( x ) ,
18.18.38 = 0 n L ( α ) ( x ) L n ( β ) ( y ) = L n ( α + β + 1 ) ( x + y ) .
9: 18.17 Integrals
Laguerre
Laguerre
Laguerre
Laguerre
Laguerre
10: 18.1 Notation
Classical OP’s
  • Laguerre: L n ( α ) ( x ) and L n ( x ) = L n ( 0 ) ( x ) . ( L n ( α ) ( x ) with α 0 is also called Generalized Laguerre.)

  • q -Laguerre: L n ( α ) ( x ; q ) .