About the Project

pseudo-spectral theory and representations

AdvancedHelp

(0.002 seconds)

11—20 of 35 matching pages

11: 27.4 Euler Products and Dirichlet Series
27.4.1 n = 1 f ( n ) = p ( 1 + r = 1 f ( p r ) ) ,
Euler products are used to find series that generate many functions of multiplicative number theory. The completely multiplicative function f ( n ) = n s gives the Euler product representation of the Riemann zeta function ζ ( s ) 25.2(i)): …
27.4.4 F ( s ) = n = 1 f ( n ) n s ,
12: Bibliography R
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • B. Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen.
  • K. H. Rosen (2004) Elementary Number Theory and its Applications. 5th edition, Addison-Wesley, Reading, MA.
  • G. Rota (1964) On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, pp. 340–368.
  • 13: Bibliography E
  • G. P. Egorychev (1984) Integral Representation and the Computation of Combinatorial Sums. Translations of Mathematical Monographs, Vol. 59, American Mathematical Society, Providence, RI.
  • E. Elizalde (1995) Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics. New Series m: Monographs, Vol. 35, Springer-Verlag, Berlin.
  • T. Estermann (1959) On the representations of a number as a sum of three squares. Proc. London Math. Soc. (3) 9, pp. 575–594.
  • W. N. Everitt, L. L. Littlejohn, and R. Wellman (2004) The Sobolev orthogonality and spectral analysis of the Laguerre polynomials { L n k } for positive integers k . J. Comput. Appl. Math. 171 (1-2), pp. 199–234.
  • W. N. Everitt (2005b) Charles Sturm and the development of Sturm-Liouville theory in the years 1900 to 1950. In Sturm-Liouville theory, pp. 45–74.
  • 14: Bibliography T
  • T. Ton-That, K. I. Gross, D. St. P. Richards, and P. J. Sally (Eds.) (1995) Representation Theory and Harmonic Analysis. Contemporary Mathematics, Vol. 191, American Mathematical Society, Providence, RI.
  • 15: Bibliography L
  • A. M. Legendre (1808) Essai sur la Théorie des Nombres. 2nd edition, Courcier, Paris.
  • B. M. Levitan and I. S. Sargsjan (1975) Introduction to spectral theory: selfadjoint ordinary differential operators. Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I..
  • C. Liaw, L. L. Littlejohn, R. Milson, and J. Stewart (2016) The spectral analysis of three families of exceptional Laguerre polynomials. J. Approx. Theory 202, pp. 5–41.
  • J. C. Light and T. Carrington Jr. (2000) Discrete-variable representations and their utilization. In Advances in Chemical Physics, pp. 263–310.
  • R. J. Lyman and W. W. Edmonson (2001) Linear prediction of bandlimited processes with flat spectral densities. IEEE Trans. Signal Process. 49 (7), pp. 1564–1569.
  • 16: Bibliography S
  • M. J. Seaton (1983) Quantum defect theory. Rep. Prog. Phys. 46 (2), pp. 167–257.
  • B. Shizgal (2015) Spectral Methods in Chemistry and Physics. Applications to Kinetic Theory and Quantum Mechanics. Scientific Computation, Springer-Verlag, Dordrecht.
  • B. Simon (2005b) Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory. American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
  • B. Simon (2011) Szegő’s Theorem and Its Descendants. Spectral Theory for L 2 Perturbations of Orthogonal Polynomials. M. B. Porter Lectures, Princeton University Press, Princeton, NJ.
  • B. D. Sleeman (1978) Multiparameter spectral theory in Hilbert space. Research Notes in Mathematics, Vol. 22, Pitman (Advanced Publishing Program), Boston, Mass.-London.
  • 17: Bibliography
  • J. C. Adams and P. N. Swarztrauber (1997) SPHEREPACK 2.0: A Model Development Facility. NCAR Technical Note Technical Report TN-436-STR, National Center for Atmospheric Research.
  • A. Apelblat (1991) Integral representation of Kelvin functions and their derivatives with respect to the order. Z. Angew. Math. Phys. 42 (5), pp. 708–714.
  • T. M. Apostol and I. Niven (1994) Number Theory. In The New Encyclopaedia Britannica, Vol. 25, pp. 14–37.
  • R. Askey and J. Fitch (1969) Integral representations for Jacobi polynomials and some applications. J. Math. Anal. Appl. 26 (2), pp. 411–437.
  • R. Askey (1974) Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal. 5, pp. 119–124.
  • 18: Bibliography G
  • K. I. Gross and R. A. Kunze (1976) Bessel functions and representation theory. I. J. Functional Analysis 22 (2), pp. 73–105.
  • 19: Bibliography Z
  • D. Zagier (1989) The Dilogarithm Function in Geometry and Number Theory. In Number Theory and Related Topics (Bombay, 1988), R. Askey and others (Eds.), Tata Inst. Fund. Res. Stud. Math., Vol. 12, pp. 231–249.
  • A. H. Zemanian (1987) Distribution Theory and Transform Analysis, An Introduction and Generalized Functions with Applications. Dover, New York.
  • A. Zhedanov (1998) On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval. J. Approx. Theory 94 (1), pp. 73–106.
  • Q. Zheng (1997) Generalized Watson Transforms and Applications to Group Representations. Ph.D. Thesis, University of Vermont, Burlington,VT.
  • 20: 27.14 Unrestricted Partitions
    Euler’s pentagonal number theorem states that … and s ( h , k ) is a Dedekind sum given by … For example, the Ramanujan identity …
    §27.14(vi) Ramanujan’s Tau Function