About the Project

Whittaker functions

AdvancedHelp

(0.006 seconds)

21—30 of 105 matching pages

21: 13.20 Uniform Asymptotic Approximations for Large μ
§13.20(i) Large μ , Fixed κ
13.20.1 M κ , μ ( z ) = z μ + 1 2 ( 1 + O ( μ 1 ) ) ,
13.20.2 W κ , μ ( x ) = π 1 2 Γ ( κ + μ ) ( 1 4 x ) 1 2 μ ( 1 + O ( μ 1 ) ) ,
22: 18.34 Bessel Polynomials
For the confluent hypergeometric function F 1 1 and the generalized hypergeometric function F 0 2 , the Laguerre polynomial L n ( α ) and the Whittaker function W κ , μ see §16.2(ii), §16.2(iv), (18.5.12), and (13.14.3), respectively.
18.34.1 y n ( x ; a ) = F 0 2 ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ( x 2 ) n F 1 1 ( n 2 n a + 2 ; 2 x ) = n ! ( 1 2 x ) n L n ( 1 a 2 n ) ( 2 x 1 ) = ( 1 2 x ) 1 1 2 a e 1 / x W 1 1 2 a , 1 2 ( a 1 ) + n ( 2 x 1 ) .
18.34.7_1 ϕ n ( x ; λ ) = e λ e x ( 2 λ e x ) λ 1 2 y n ( λ 1 e x ; 2 2 λ ) / n ! = ( 1 ) n e λ e x ( 2 λ e x ) λ n 1 2 L n ( 2 λ 2 n 1 ) ( 2 λ e x ) = ( 2 λ ) 1 2 e x / 2 W λ , n + 1 2 λ ( 2 λ e x ) / n ! , n = 0 , 1 , , N = λ 3 2 , λ > 1 2 ,
expressed in terms of Romanovski–Bessel polynomials, Laguerre polynomials or Whittaker functions, we have …
23: 13.15 Recurrence Relations and Derivatives
§13.15(i) Recurrence Relations
13.15.8 W κ + 1 2 , μ + 1 2 ( z ) z W κ , μ ( z ) + ( κ μ 1 2 ) W κ 1 2 , μ + 1 2 ( z ) = 0 ,
13.15.9 W κ + 1 2 , μ 1 2 ( z ) z W κ , μ ( z ) + ( κ + μ 1 2 ) W κ 1 2 , μ 1 2 ( z ) = 0 ,
13.15.11 W κ + 1 , μ ( z ) + ( 2 κ z ) W κ , μ ( z ) + ( κ μ 1 2 ) ( κ + μ 1 2 ) W κ 1 , μ ( z ) = 0 ,
§13.15(ii) Differentiation Formulas
24: 10.16 Relations to Other Functions
10.16.7 J ν ( z ) = e ( 2 ν + 1 ) π i / 4 2 2 ν Γ ( ν + 1 ) ( 2 z ) 1 2 M 0 , ν ( ± 2 i z ) , 2 ν 1 , 2 , 3 , ,
For the functions M 0 , ν and W 0 , ν see §13.14(i). …
25: 32.10 Special Function Solutions
§32.10(v) Fifth Painlevé Equation
P V  then has solutions expressible in terms of Whittaker functions13.14(i)), iff …
32.10.27 ϕ ( z ) = C 1 M κ , μ ( ζ ) + C 2 W κ , μ ( ζ ) ζ ( a b + 1 ) / 2 exp ( 1 2 ζ ) ,
26: 28.8 Asymptotic Expansions for Large q
28.8.4 U m ( ξ ) D m ( ξ ) 1 2 6 h ( D m + 4 ( ξ ) 4 ! ( m 4 ) D m 4 ( ξ ) ) + 1 2 13 h 2 ( D m + 8 ( ξ ) 2 5 ( m + 2 ) D m + 4 ( ξ ) + 4 !  2 5 ( m 1 ) ( m 4 ) D m 4 ( ξ ) + 8 ! ( m 8 ) D m 8 ( ξ ) ) + ,
28.8.5 V m ( ξ ) 1 2 4 h ( D m + 2 ( ξ ) m ( m 1 ) D m 2 ( ξ ) ) + 1 2 10 h 2 ( D m + 6 ( ξ ) + ( m 2 25 m 36 ) D m + 2 ( ξ ) m ( m 1 ) ( m 2 + 27 m 10 ) D m 2 ( ξ ) 6 ! ( m 6 ) D m 6 ( ξ ) ) + ,
The approximations are expressed in terms of Whittaker functions W κ , μ ( z ) and M κ , μ ( z ) with μ = 1 4 ; compare §2.8(vi). …With additional restrictions on z , uniform asymptotic approximations for solutions of (28.2.1) and (28.20.1) are also obtained in terms of elementary functions by re-expansions of the Whittaker functions; compare §2.8(ii). Subsequently the asymptotic solutions involving either elementary or Whittaker functions are identified in terms of the Floquet solutions me ν ( z , q ) 28.12(ii)) and modified Mathieu functions M ν ( j ) ( z , h ) 28.20(iii)). …
27: 13.29 Methods of Computation
Similarly for the Whittaker functions. … The integral representations (13.4.1) and (13.4.4) can be used to compute the Kummer functions, and (13.16.1) and (13.16.5) for the Whittaker functions. …
13.29.2 y ( n ) = z n μ 1 2 M κ , n + μ ( z ) ,
28: 18.11 Relations to Other Functions
18.11.2 L n ( α ) ( x ) = ( α + 1 ) n n ! M ( n , α + 1 , x ) = ( 1 ) n n ! U ( n , α + 1 , x ) = ( α + 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x M n + 1 2 ( α + 1 ) , 1 2 α ( x ) = ( 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x W n + 1 2 ( α + 1 ) , 1 2 α ( x ) .
For the confluent hypergeometric functions M ( a , b , x ) and U ( a , b , x ) , see §13.2(i), and for the Whittaker functions M κ , μ ( x ) and W κ , μ ( x ) see §13.14(i). …
29: Bibliography O
  • F. W. J. Olver (1965) On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (2), pp. 225–243.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • 30: 3.10 Continued Fractions
    For applications to Bessel functions and Whittaker functions (Chapters 10 and 13), see Gargantini and Henrici (1967). … For special functions see §5.10 (gamma function), §7.9 (error function), §8.9 (incomplete gamma functions), §8.17(v) (incomplete beta function), §8.19(vii) (generalized exponential integral), §§10.10 and 10.33 (quotients of Bessel functions), §13.6 (quotients of confluent hypergeometric functions), §13.19 (quotients of Whittaker functions), and §15.7 (quotients of hypergeometric functions). …