About the Project

Watson integrals

AdvancedHelp

(0.003 seconds)

11—20 of 53 matching pages

11: 5.9 Integral Representations
5.9.10_2 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 0 e z t ( 1 e t 1 1 t + 1 2 ) d t t ,
12: 19 Elliptic Integrals
Chapter 19 Elliptic Integrals
13: 11.7 Integrals and Sums
§11.7 Integrals and Sums
§11.7(i) Indefinite Integrals
§11.7(ii) Definite Integrals
§11.7(iv) Integrals with Respect to Order
14: 6.12 Asymptotic Expansions
§6.12(i) Exponential and Logarithmic Integrals
For the function χ see §9.7(i). …
§6.12(ii) Sine and Cosine Integrals
15: 10.43 Integrals
For collections of integrals of the functions I ν ( z ) and K ν ( z ) , including integrals with respect to the order, see Apelblat (1983, §12), Erdélyi et al. (1953b, §§7.7.1–7.7.7 and 7.14–7.14.2), Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2000, §§5.5, 6.5–6.7), Gröbner and Hofreiter (1950, pp. 197–203), Luke (1962), Magnus et al. (1966, §3.8), Marichev (1983, pp. 191–216), Oberhettinger (1972), Oberhettinger (1974, §§1.11 and 2.7), Oberhettinger (1990, §§1.17–1.20 and 2.17–2.20), Oberhettinger and Badii (1973, §§1.15 and 2.13), Okui (1974, 1975), Prudnikov et al. (1986b, §§1.11–1.12, 2.15–2.16, 3.2.8–3.2.10, and 3.4.1), Prudnikov et al. (1992a, §§3.15, 3.16), Prudnikov et al. (1992b, §§3.15, 3.16), Watson (1944, Chapter 13), and Wheelon (1968).
16: 22.8 Addition Theorems
A geometric interpretation of (22.8.20) analogous to that of (23.10.5) is given in Whittaker and Watson (1927, p. 530). …
22.8.22 z 1 + z 2 + z 3 + z 4 = 2 K ( k ) .
If sums/differences of the z j ’s are rational multiples of K ( k ) , then further relations follow. …
22.8.24 z 1 z 2 = z 2 z 3 = 2 3 K ( k ) ,
22.8.26 z 1 z 2 = z 2 z 3 = z 3 z 4 = 1 2 K ( k ) ,
17: 7.12 Asymptotic Expansions
§7.12(ii) Fresnel Integrals
The asymptotic expansions of C ( z ) and S ( z ) are given by (7.5.3), (7.5.4), and … They are bounded by | csc ( 4 ph z ) | times the first neglected terms when 1 8 π | ph z | < 1 4 π . …
§7.12(iii) Goodwin–Staton Integral
See Olver (1997b, p. 115) for an expansion of G ( z ) with bounds for the remainder for real and complex values of z .
18: 8.21 Generalized Sine and Cosine Integrals
§8.21 Generalized Sine and Cosine Integrals
§8.21(iii) Integral Representations
§8.21(iv) Interrelations
§8.21(v) Special Values
19: 11.5 Integral Representations
For further integral representations see Babister (1967, §§3.3, 3.14), Erdélyi et al. (1954a, §§5.17, 15.3), Magnus et al. (1966, p. 114), Oberhettinger (1972), Oberhettinger (1974, §2.7), Oberhettinger and Badii (1973, §2.14), and Watson (1944, pp. 330, 374, and 426).
20: 10.22 Integrals
10.22.72 0 J μ ( a t ) J ν ( b t ) J ν ( c t ) t 1 μ d t = ( b c ) μ 1 sin ( ( μ ν ) π ) ( sinh χ ) μ 1 2 ( 1 2 π 3 ) 1 2 a μ e ( μ 1 2 ) i π Q ν 1 2 1 2 μ ( cosh χ ) , μ > 1 2 , ν > 1 , a > b + c , cosh χ = ( a 2 b 2 c 2 ) / ( 2 b c ) .
10.22.78 f ( x ) = 0 ( x t ) 1 2 J ν ( x t ) Y ν ( a t ) Y ν ( x t ) J ν ( a t ) J ν 2 ( a t ) + Y ν 2 ( a t ) a ( y t ) 1 2 ( J ν ( y t ) Y ν ( a t ) Y ν ( y t ) J ν ( a t ) ) f ( y ) d y d t , a > 0 .
For collections of integrals of the functions J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , and H ν ( 2 ) ( z ) , including integrals with respect to the order, see Andrews et al. (1999, pp. 216–225), Apelblat (1983, §12), Erdélyi et al. (1953b, §§7.7.1–7.7.7 and 7.14–7.14.2), Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2000, §§5.5 and 6.5–6.7), Gröbner and Hofreiter (1950, pp. 196–204), Luke (1962), Magnus et al. (1966, §3.8), Marichev (1983, pp. 191–216), Oberhettinger (1974, §§1.10 and 2.7), Oberhettinger (1990, §§1.13–1.16 and 2.13–2.16), Oberhettinger and Badii (1973, §§1.14 and 2.12), Okui (1974, 1975), Prudnikov et al. (1986b, §§1.8–1.10, 2.12–2.14, 3.2.4–3.2.7, 3.3.2, and 3.4.1), Prudnikov et al. (1992a, §§3.12–3.14), Prudnikov et al. (1992b, §§3.12–3.14), Watson (1944, Chapters 5, 12, 13, and 14), and Wheelon (1968).