About the Project

Kummer functions

AdvancedHelp

(0.005 seconds)

11—20 of 65 matching pages

11: 13.8 Asymptotic Approximations for Large Parameters
§13.8(i) Large | b | , Fixed a and z
§13.8(ii) Large b and z , Fixed a and b / z
§13.8(iii) Large a
§13.8(iv) Large a and b
12: 13.9 Zeros
§13.9(i) Zeros of M ( a , b , z )
§13.9(ii) Zeros of U ( a , b , z )
13: 13.11 Series
13.11.1 M ( a , b , z ) = Γ ( a 1 2 ) e 1 2 z ( 1 4 z ) 1 2 a s = 0 ( 2 a 1 ) s ( 2 a b ) s ( b ) s s ! ( a 1 2 + s ) I a 1 2 + s ( 1 2 z ) , a + 1 2 , b 0 , 1 , 2 , ,
13.11.2 M ( a , b , z ) = Γ ( b a 1 2 ) e 1 2 z ( 1 4 z ) a b + 1 2 s = 0 ( 1 ) s ( 2 b 2 a 1 ) s ( b 2 a ) s ( b a 1 2 + s ) ( b ) s s ! I b a 1 2 + s ( 1 2 z ) , b a + 1 2 , b 0 , 1 , 2 , .
13.11.3 𝐌 ( a , b , z ) = e 1 2 z s = 0 A s ( b 2 a ) 1 2 ( 1 b s ) ( 1 2 z ) 1 2 ( 1 b + s ) J b 1 + s ( 2 z ( b 2 a ) ) ,
( n + 1 ) A n + 1 = ( n + b 1 ) A n 1 + ( 2 a b ) A n 2 , n = 2 , 3 , 4 , .
14: 13.7 Asymptotic Expansions for Large Argument
§13.7 Asymptotic Expansions for Large Argument
§13.7(ii) Error Bounds
§13.7(iii) Exponentially-Improved Expansion
For extensions to hyperasymptotic expansions see Olde Daalhuis and Olver (1995a).
15: 13.28 Physical Applications
§13.28 Physical Applications
16: 13.3 Recurrence Relations and Derivatives
§13.3(i) Recurrence Relations
13.3.7 U ( a 1 , b , z ) + ( b 2 a z ) U ( a , b , z ) + a ( a b + 1 ) U ( a + 1 , b , z ) = 0 ,
13.3.14 ( a + 1 ) z U ( a + 2 , b + 2 , z ) + ( z b ) U ( a + 1 , b + 1 , z ) U ( a , b , z ) = 0 .
§13.3(ii) Differentiation Formulas
13.3.29 ( z d d z z ) n = z n d n d z n z n , n = 1 , 2 , 3 , .
17: 13.5 Continued Fractions
§13.5 Continued Fractions
13.5.1 M ( a , b , z ) M ( a + 1 , b + 1 , z ) = 1 + u 1 z 1 + u 2 z 1 + ,
13.5.3 U ( a , b , z ) U ( a , b 1 , z ) = 1 + v 1 / z 1 + v 2 / z 1 + ,
18: 16.6 Transformations of Variable
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
19: Bibliography Y
  • T. Yoshida (1995) Computation of Kummer functions U ( a , b , x ) for large argument x by using the τ -method. Trans. Inform. Process. Soc. Japan 36 (10), pp. 2335–2342 (Japanese).
  • 20: 6.20 Approximations
  • Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric U -function13.2(i)) from which Chebyshev expansions near infinity for E 1 ( z ) , f ( z ) , and g ( z ) follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the U functions. If | ph z | < π the scheme can be used in backward direction.