About the Project

.足球世界杯开球_『wn4.com_』世界杯输了要赔钱吗_w6n2c9o_2022年11月29日2时54分22秒_ic6k0s0ic

AdvancedHelp

(0.003 seconds)

21—30 of 789 matching pages

21: Bibliography
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • D. E. Amos (1983c) Uniform asymptotic expansions for exponential integrals E n ( x ) and Bickley functions Ki n ( x ) . ACM Trans. Math. Software 9 (4), pp. 467–479.
  • K. Aomoto (1987) Special value of the hypergeometric function F 2 3 and connection formulae among asymptotic expansions. J. Indian Math. Soc. (N.S.) 51, pp. 161–221.
  • V. I. Arnol’d (1972) Normal forms of functions near degenerate critical points, the Weyl groups A k , D k , E k and Lagrangian singularities. Funkcional. Anal. i Priložen. 6 (4), pp. 3–25 (Russian).
  • V. I. Arnol’d (1974) Normal forms of functions in the neighborhood of degenerate critical points. Uspehi Mat. Nauk 29 (2(176)), pp. 11–49 (Russian).
  • 22: 24.20 Tables
    Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. … For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
    23: 3.11 Approximation Techniques
    Beginning with u n + 1 = 0 , u n = c n , we apply … With b 0 = 1 , the last q equations give b 1 , , b q as the solution of a system of linear equations. … (3.11.29) is a system of n + 1 linear equations for the coefficients a 0 , a 1 , , a n . … With this choice of a k and f j = f ( x j ) , the corresponding sum (3.11.32) vanishes. … Two are endpoints: ( x 0 , y 0 ) and ( x 3 , y 3 ) ; the other points ( x 1 , y 1 ) and ( x 2 , y 2 ) are control points. …
    24: Bibliography K
  • S. K. Kim (1972) The asymptotic expansion of a hypergeometric function F 2 2 ( 1 , α ; ρ 1 , ρ 2 ; z ) . Math. Comp. 26 (120), pp. 963.
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • C. G. Kokologiannaki, P. D. Siafarikas, and C. B. Kouris (1992) On the complex zeros of H μ ( z ) , J μ ( z ) , J μ ′′ ( z ) for real or complex order. J. Comput. Appl. Math. 40 (3), pp. 337–344.
  • T. H. Koornwinder (2015) Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators. SIGMA Symmetry Integrability Geom. Methods Appl. 11, pp. Paper 074, 22.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • 25: Bibliography O
  • K. Okamoto (1986) Studies on the Painlevé equations. III. Second and fourth Painlevé equations, P II and P IV . Math. Ann. 275 (2), pp. 221–255.
  • K. Okamoto (1987a) Studies on the Painlevé equations. I. Sixth Painlevé equation P VI . Ann. Mat. Pura Appl. (4) 146, pp. 337–381.
  • K. Okamoto (1987b) Studies on the Painlevé equations. II. Fifth Painlevé equation P V . Japan. J. Math. (N.S.) 13 (1), pp. 47–76.
  • K. Okamoto (1987c) Studies on the Painlevé equations. IV. Third Painlevé equation P III . Funkcial. Ekvac. 30 (2-3), pp. 305–332.
  • H. Oser (1960) Algorithm 22: Riccati-Bessel functions of first and second kind. Comm. ACM 3 (11), pp. 600–601.
  • 26: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    11 π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) ( 2 3 ) 2 ( 3 + 1 ) 2 ( 3 1 ) ( 2 + 3 )
    4.17.1 lim z 0 sin z z = 1 ,
    4.17.2 lim z 0 tan z z = 1 .
    4.17.3 lim z 0 1 cos z z 2 = 1 2 .
    27: 28.8 Asymptotic Expansions for Large q
    Also let ξ = 2 h cos x and D m ( ξ ) = e ξ 2 / 4 𝐻𝑒 m ( ξ ) 18.3). …
    σ m 1 + s 2 3 h + 4 s 2 + 3 2 7 h 2 + 19 s 3 + 59 s 2 11 h 3 + ,
    28.8.11 P m ( x ) 1 + s 2 3 h cos 2 x + 1 h 2 ( s 4 + 86 s 2 + 105 2 11 cos 4 x s 4 + 22 s 2 + 57 2 11 cos 2 x ) + ,
    The approximations are expressed in terms of Whittaker functions W κ , μ ( z ) and M κ , μ ( z ) with μ = 1 4 ; compare §2.8(vi). … Subsequently the asymptotic solutions involving either elementary or Whittaker functions are identified in terms of the Floquet solutions me ν ( z , q ) 28.12(ii)) and modified Mathieu functions M ν ( j ) ( z , h ) 28.20(iii)). …
    28: Bibliography H
  • L. Habsieger (1986) La q -conjecture de Macdonald-Morris pour G 2 . C. R. Acad. Sci. Paris Sér. I Math. 303 (6), pp. 211–213 (French).
  • R. S. Heller (1976) 25D Table of the First One Hundred Values of j 0 , s , J 1 ( j 0 , s ) , j 1 , s , J 0 ( j 1 , s ) = J 0 ( j 0 , s + 1 ) , j 1 , s , J 1 ( j 1 , s ) . Technical report Department of Physics, Worcester Polytechnic Institute, Worcester, MA.
  • D. R. Herrick and S. O’Connor (1998) Inverse virial symmetry of diatomic potential curves. J. Chem. Phys. 109 (1), pp. 11–19.
  • H. W. Hethcote (1970) Error bounds for asymptotic approximations of zeros of Hankel functions occurring in diffraction problems. J. Mathematical Phys. 11 (8), pp. 2501–2504.
  • G. W. Hill (1981) Algorithm 571: Statistics for von Mises’ and Fisher’s distributions of directions: I 1 ( x ) / I 0 ( x ) , I 1.5 ( x ) / I 0.5 ( x ) and their inverses [S14]. ACM Trans. Math. Software 7 (2), pp. 233–238.
  • 29: 18.38 Mathematical Applications
    For the generalized hypergeometric function F 2 3 see (16.2.1). … Define operators K 0 and K 1 acting on symmetric Laurent polynomials by K 0 = L ( L given by (18.28.6_2)) and ( K 1 f ) ( z ) = ( z + z 1 ) f ( z ) . …commutes with K 0 , K 1 , K 2 , that is K j Q = Q K j , and satisfies …where Q 0 is a constant with explicit expression in terms of e 1 , e 2 , e 3 , e 4 and q given in Koornwinder (2007a, (2.8)). The abstract associative algebra with generators K 0 , K 1 , K 2 and relations (18.38.4), (18.38.6) and with the constants B , C 0 , C 1 , D 0 , D 1 in (18.38.6) not yet specified, is called the Zhedanov algebra or Askey–Wilson algebra AW(3). …
    30: 20.9 Relations to Other Functions
    20.9.1 k = θ 2 2 ( 0 | τ ) / θ 3 2 ( 0 | τ )
    20.9.3 R F ( θ 2 2 ( z , q ) θ 2 2 ( 0 , q ) , θ 3 2 ( z , q ) θ 3 2 ( 0 , q ) , θ 4 2 ( z , q ) θ 4 2 ( 0 , q ) ) = θ 1 ( 0 , q ) θ 1 ( z , q ) z ,
    20.9.4 R F ( 0 , θ 3 4 ( 0 , q ) , θ 4 4 ( 0 , q ) ) = 1 2 π ,
    20.9.5 exp ( π R F ( 0 , k 2 , 1 ) R F ( 0 , k 2 , 1 ) ) = q .
    See Koblitz (1993, Ch. 2, §4) and Titchmarsh (1986b, pp. 21–22). …