About the Project

.优酷 酷喵看世界杯『网址:687.vii』守望先锋世界杯安娜_b5p6v3_fjrpfj.hk

AdvancedHelp

The terms "b5p6v3", "fjrpfj.hk" were not found.

(0.004 seconds)

1—10 of 765 matching pages

1: 19.2 Definitions
where p j is a polynomial in t while ρ and σ are rational functions of t . … Here a , b , p are real parameters, and k c and x are real or complex variables, with p 0 , k c 0 . … If 1 < k 1 / sin ϕ , then k c is pure imaginary. …
§19.2(iv) A Related Function: R C ( x , y )
For the special cases of R C ( x , x ) and R C ( 0 , y ) see (19.6.15). …
2: Bibliography F
  • V. N. Faddeeva and N. M. Terent’ev (1954) Tablicy značeniĭ funkcii w ( z ) = e z 2 ( 1 + 2 i π 0 z e t 2 𝑑 t ) ot kompleksnogo argumenta. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (Russian).
  • P. J. Forrester and N. S. Witte (2002) Application of the τ -function theory of Painlevé equations to random matrices: P V , P III , the LUE, JUE, and CUE. Comm. Pure Appl. Math. 55 (6), pp. 679–727.
  • P. J. Forrester and N. S. Witte (2004) Application of the τ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.
  • C. L. Frenzen (1990) Error bounds for a uniform asymptotic expansion of the Legendre function Q n m ( cosh z ) . SIAM J. Math. Anal. 21 (2), pp. 523–535.
  • T. Fukushima (2010) Fast computation of incomplete elliptic integral of first kind by half argument transformation. Numer. Math. 116 (4), pp. 687–719.
  • 3: Bibliography D
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • G. Delic (1979b) Chebyshev series for the spherical Bessel function j l ( r ) . Comput. Phys. Comm. 18 (1), pp. 73–86.
  • D. Dominici, S. J. Johnston, and K. Jordaan (2013) Real zeros of F 1 2 hypergeometric polynomials. J. Comput. Appl. Math. 247, pp. 152–161.
  • C. F. du Toit (1993) Bessel functions J n ( z ) and Y n ( z ) of integer order and complex argument. Comput. Phys. Comm. 78 (1-2), pp. 181–189.
  • T. M. Dunster (2003a) Uniform asymptotic approximations for the Whittaker functions M κ , i μ ( z ) and W κ , i μ ( z ) . Anal. Appl. (Singap.) 1 (2), pp. 199–212.
  • 4: Bibliography G
  • W. Gautschi (1959a) Exponential integral 1 e x t t n 𝑑 t for large values of n . J. Res. Nat. Bur. Standards 62, pp. 123–125.
  • A. Gervois and H. Navelet (1986a) Some integrals involving three modified Bessel functions. I. J. Math. Phys. 27 (3), pp. 682–687.
  • A. Gil, J. Segura, and N. M. Temme (2009) Computing the conical function P 1 / 2 + i τ μ ( x ) . SIAM J. Sci. Comput. 31 (3), pp. 1716–1741.
  • E. T. Goodwin and J. Staton (1948) Table of 0 e u 2 u + x 𝑑 u . Quart. J. Mech. Appl. Math. 1 (1), pp. 319–326.
  • D. Goss (1978) Von Staudt for 𝐅 q [ T ] . Duke Math. J. 45 (4), pp. 885–910.
  • 5: Bibliography S
  • S. Sandström and C. Ackrén (2007) Note on the complex zeros of H ν ( x ) + i ζ H ν ( x ) = 0 . J. Comput. Appl. Math. 201 (1), pp. 3–7.
  • K. Schulten and R. G. Gordon (1976) Recursive evaluation of 3 j - and 6 j - coefficients. Comput. Phys. Comm. 11 (2), pp. 269–278.
  • R. S. Scorer (1950) Numerical evaluation of integrals of the form I = x 1 x 2 f ( x ) e i ϕ ( x ) 𝑑 x and the tabulation of the function Gi ( z ) = ( 1 / π ) 0 sin ( u z + 1 3 u 3 ) 𝑑 u . Quart. J. Mech. Appl. Math. 3 (1), pp. 107–112.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • C. E. Synolakis (1988) On the roots of f ( z ) = J 0 ( z ) i J 1 ( z ) . Quart. Appl. Math. 46 (1), pp. 105–107.
  • 6: 34.6 Definition: 9 j Symbol
    34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
    34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
    7: 34.5 Basic Properties: 6 j Symbol
    34.5.9 { j 1 j 2 j 3 l 1 l 2 l 3 } = { j 1 1 2 ( j 2 + l 2 + j 3 l 3 ) 1 2 ( j 2 l 2 + j 3 + l 3 ) l 1 1 2 ( j 2 + l 2 j 3 + l 3 ) 1 2 ( j 2 + l 2 + j 3 + l 3 ) } ,
    34.5.10 { j 1 j 2 j 3 l 1 l 2 l 3 } = { 1 2 ( j 2 + l 2 + j 3 l 3 ) 1 2 ( j 1 l 1 + j 3 + l 3 ) 1 2 ( j 1 + l 1 + j 2 l 2 ) 1 2 ( j 2 + l 2 j 3 + l 3 ) 1 2 ( j 1 + l 1 + j 3 + l 3 ) 1 2 ( j 1 + l 1 j 2 + l 2 ) } .
    34.5.11 ( 2 j 1 + 1 ) ( ( J 3 + J 2 J 1 ) ( L 3 + L 2 J 1 ) 2 ( J 3 L 3 + J 2 L 2 J 1 L 1 ) ) { j 1 j 2 j 3 l 1 l 2 l 3 } = j 1 E ( j 1 + 1 ) { j 1 + 1 j 2 j 3 l 1 l 2 l 3 } + ( j 1 + 1 ) E ( j 1 ) { j 1 1 j 2 j 3 l 1 l 2 l 3 } ,
    34.5.16 ( 1 ) j 1 + j 2 + j 3 + j 1 + j 2 + l 1 + l 2 { j 1 j 2 j 3 l 1 l 2 l 3 } { j 1 j 2 j 3 l 1 l 2 l 3 } = j ( 1 ) l 3 + l 3 + j ( 2 j + 1 ) { j 1 j 1 j j 2 j 2 j 3 } { l 3 l 3 j j 1 j 1 l 2 } { l 3 l 3 j j 2 j 2 l 1 } .
    34.5.23 ( j 1 j 2 j 3 m 1 m 2 m 3 ) { j 1 j 2 j 3 l 1 l 2 l 3 } = m 1 m 2 m 3 ( 1 ) l 1 + l 2 + l 3 + m 1 + m 2 + m 3 ( j 1 l 2 l 3 m 1 m 2 m 3 ) ( l 1 j 2 l 3 m 1 m 2 m 3 ) ( l 1 l 2 j 3 m 1 m 2 m 3 ) .
    8: 34.4 Definition: 6 j Symbol
    34.4.1 { j 1 j 2 j 3 l 1 l 2 l 3 } = m r m s ( 1 ) l 1 + m 1 + l 2 + m 2 + l 3 + m 3 ( j 1 j 2 j 3 m 1 m 2 m 3 ) ( j 1 l 2 l 3 m 1 m 2 m 3 ) ( l 1 j 2 l 3 m 1 m 2 m 3 ) ( l 1 l 2 j 3 m 1 m 2 m 3 ) ,
    Except in degenerate cases the combination of the triangle inequalities for the four 3 j symbols in (34.4.1) is equivalent to the existence of a tetrahedron (possibly degenerate) with edges of lengths j 1 , j 2 , j 3 , l 1 , l 2 , l 3 ; see Figure 34.4.1. …
    34.4.2 { j 1 j 2 j 3 l 1 l 2 l 3 } = Δ ( j 1 j 2 j 3 ) Δ ( j 1 l 2 l 3 ) Δ ( l 1 j 2 l 3 ) Δ ( l 1 l 2 j 3 ) s ( 1 ) s ( s + 1 ) ! ( s j 1 j 2 j 3 ) ! ( s j 1 l 2 l 3 ) ! ( s l 1 j 2 l 3 ) ! ( s l 1 l 2 j 3 ) ! 1 ( j 1 + j 2 + l 1 + l 2 s ) ! ( j 2 + j 3 + l 2 + l 3 s ) ! ( j 3 + j 1 + l 3 + l 1 s ) ! ,
    where F 3 4 is defined as in §16.2. For alternative expressions for the 6 j symbol, written either as a finite sum or as other terminating generalized hypergeometric series F 3 4 of unit argument, see Varshalovich et al. (1988, §§9.2.1, 9.2.3).
    9: 34.7 Basic Properties: 9 j Symbol
    34.7.1 { j 11 j 12 j 13 j 21 j 22 j 13 j 31 j 31 0 } = ( 1 ) j 12 + j 21 + j 13 + j 31 ( ( 2 j 13 + 1 ) ( 2 j 31 + 1 ) ) 1 2 { j 11 j 12 j 13 j 22 j 21 j 31 } .
    34.7.2 j 12 j 34 ( 2 j 12 + 1 ) ( 2 j 34 + 1 ) ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } = δ j 13 , j 13 δ j 24 , j 24 .
    34.7.3 j 13 j 24 ( 1 ) 2 j 2 + j 24 + j 23 j 34 ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 3 j 13 j 4 j 2 j 24 j 14 j 23 j } = { j 1 j 2 j 12 j 4 j 3 j 34 j 14 j 23 j } .
    34.7.4 ( j 13 j 23 j 33 m 13 m 23 m 33 ) { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = m r 1 , m r 2 , r = 1 , 2 , 3 ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) .
    34.7.5 j ( 2 j + 1 ) { j 11 j 12 j j 21 j 22 j 23 j 31 j 32 j 33 } { j 11 j 12 j j 23 j 33 j } = ( 1 ) 2 j { j 21 j 22 j 23 j 12 j j 32 } { j 31 j 32 j 33 j j 11 j 21 } .
    10: 34.3 Basic Properties: 3 j Symbol
    When any one of j 1 , j 2 , j 3 is equal to 0 , 1 2 , or 1 , the 3 j symbol has a simple algebraic form. …For these and other results, and also cases in which any one of j 1 , j 2 , j 3 is 3 2 or 2 , see Edmonds (1974, pp. 125–127). … Even permutations of columns of a 3 j symbol leave it unchanged; odd permutations of columns produce a phase factor ( 1 ) j 1 + j 2 + j 3 , for example,
    34.3.8 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( j 2 j 3 j 1 m 2 m 3 m 1 ) = ( j 3 j 1 j 2 m 3 m 1 m 2 ) ,
    For the polynomials P l see §18.3, and for the function Y l , m see §14.30. …