About the Project

scaling laws

AdvancedHelp

(0.001 seconds)

11—20 of 72 matching pages

11: 15.1 Special Notation
12: 15.2 Definitions and Analytical Properties
β–ΊExcept where indicated otherwise principal branches of F ⁑ ( a , b ; c ; z ) and 𝐅 ⁑ ( a , b ; c ; z ) are assumed throughout the DLMF. … β–ΊThe principal branch of 𝐅 ⁑ ( a , b ; c ; z ) is an entire function of a , b , and c . …As a multivalued function of z , 𝐅 ⁑ ( a , b ; c ; z ) is analytic everywhere except for possible branch points at z = 0 , 1 , and . … β–Ί(Both interpretations give solutions of the hypergeometric differential equation (15.10.1), as does 𝐅 ⁑ ( a , b ; c ; z ) , which is analytic at c = 0 , 1 , 2 , .) β–ΊFor comparison of F ⁑ ( a , b ; c ; z ) and 𝐅 ⁑ ( a , b ; c ; z ) , with the former using the limit interpretation (15.2.5), see Figures 15.3.6 and 15.3.7. …
13: 15.14 Integrals
β–Ί
15.14.1 0 x s 1 ⁒ 𝐅 ⁑ ( a , b c ; x ) ⁒ d x = Ξ“ ⁑ ( s ) ⁒ Ξ“ ⁑ ( a s ) ⁒ Ξ“ ⁑ ( b s ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c s ) , min ⁑ ( ⁑ a , ⁑ b ) > ⁑ s > 0 .
14: 30.15 Signal Analysis
β–Ί
§30.15(i) Scaled Spheroidal Wave Functions
β–Ί
§30.15(ii) Integral Equation
β–Ί β–Ί
§30.15(iv) Orthogonality
β–Ί
§30.15(v) Extremal Properties
15: 36.5 Stokes Sets
β–ΊFor z 0 , the Stokes set is expressed in terms of scaled coordinates … β–Ί
36.5.7 X = 9 20 + 20 ⁒ u 4 Y 2 20 ⁒ u 2 + 6 ⁒ u 2 ⁒ sign ⁑ ( z ) ,
β–Ί
36.5.10 160 ⁒ u 6 + 40 ⁒ u 4 = Y 2 .
β–Ί
36.5.17 Y S ⁑ ( X ) = Y ⁑ ( u , | X | ) ,
β–Ί
36.5.18 f ⁑ ( u , X ) = f ⁑ ( u + 1 3 , X ) ,
16: 5.11 Asymptotic Expansions
β–Ί
5.11.3 Ξ“ ⁑ ( z ) = e z ⁒ z z ⁒ ( 2 ⁒ Ο€ z ) 1 / 2 ⁒ Ξ“ ⁑ ( z ) e z ⁒ z z ⁒ ( 2 ⁒ Ο€ z ) 1 / 2 ⁒ k = 0 g k z k ,
β–ΊThe scaled gamma function Ξ“ ⁑ ( z ) is defined in (5.11.3) and its main property is Ξ“ ⁑ ( z ) 1 as z in the sector | ph ⁑ z | Ο€ Ξ΄ . …
17: 8.18 Asymptotic Expansions of I x ⁑ ( a , b )
β–Ί
General Case
β–ΊFor the scaled gamma function Ξ“ ⁑ ( z ) see (5.11.3). … β–Ί
8.18.14 I x ⁑ ( a , b ) Q ⁑ ( b , a ⁒ ΞΆ ) ( 2 ⁒ Ο€ ⁒ b ) 1 / 2 Ξ“ ⁑ ( b ) ⁒ ( x x 0 ) a ⁒ ( 1 x 1 x 0 ) b ⁒ k = 0 h k ⁑ ( ΞΆ , ΞΌ ) a k ,
18: 21.4 Graphics
β–ΊFigure 21.4.1 provides surfaces of the scaled Riemann theta function ΞΈ ^ ⁑ ( 𝐳 | 𝛀 ) , with … β–ΊFor the scaled Riemann theta functions depicted in Figures 21.4.221.4.5β–Ί
β–Ί
See accompanying text
β–Ί
Figure 21.4.4: A real-valued scaled Riemann theta function: ΞΈ ^ ⁑ ( i ⁒ x , i ⁒ y | 𝛀 1 ) , 0 x 4 , 0 y 4 . … Magnify 3D Help
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 21.4.5: The real part of a genus 3 scaled Riemann theta function: ⁑ ΞΈ ^ ⁑ ( x + i ⁒ y , 0 , 0 | 𝛀 2 ) , 0 x 1 , 0 y 3 . … Magnify 3D Help
19: 23.20 Mathematical Applications
β–ΊIn terms of ( x , y ) the addition law can be expressed ( x , y ) + o = ( x , y ) , ( x , y ) + ( x , y ) = o ; otherwise ( x 1 , y 1 ) + ( x 2 , y 2 ) = ( x 3 , y 3 ) , where … β–Ί
23.20.4 m = { ( 3 ⁒ x 1 2 + a ) / ( 2 ⁒ y 1 ) , P 1 = P 2 , ( y 2 y 1 ) / ( x 2 x 1 ) , P 1 P 2 .
β–ΊThe addition law states that to find the sum of two points, take the third intersection with C of the chord joining them (or the tangent if they coincide); then its reflection in the x -axis gives the required sum. …
20: 5.9 Integral Representations
β–Ί
5.9.11_1 Ξ“ ⁑ ( z ) = 1 1 2 ⁒ Ο€ ⁒ i ⁒ 0 e 2 ⁒ Ο€ ⁒ t ⁒ Ξ“ ⁑ ( t ⁒ e i ⁒ Ο€ / 2 ) t + i ⁒ z ⁒ d t + 1 2 ⁒ Ο€ ⁒ i ⁒ 0 e 2 ⁒ Ο€ ⁒ t ⁒ Ξ“ ⁑ ( t ⁒ e i ⁒ Ο€ / 2 ) t i ⁒ z ⁒ d t ,
β–Ί
5.9.11_2 1 Ξ“ ⁑ ( z ) = 1 1 2 ⁒ Ο€ ⁒ i ⁒ 0 e 2 ⁒ Ο€ ⁒ t ⁒ Ξ“ ⁑ ( t ⁒ e i ⁒ Ο€ / 2 ) t i ⁒ z ⁒ d t + 1 2 ⁒ Ο€ ⁒ i ⁒ 0 e 2 ⁒ Ο€ ⁒ t ⁒ Ξ“ ⁑ ( t ⁒ e i ⁒ Ο€ / 2 ) t + i ⁒ z ⁒ d t ,
β–Ίwhere | ph ⁑ z | < Ο€ / 2 , and the scaled gamma function Ξ“ ⁑ ( z ) is defined in (5.11.3). …