21.3 Symmetry and Quasi-Periodicity21.5 Modular Transformations

§21.4 Graphics

Figure 21.4.1 provides surfaces of the scaled Riemann theta function \mathop{\hat{\theta}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right), with

21.4.1\boldsymbol{{\Omega}}=\begin{bmatrix}1.69098\; 3006+0.95105\; 6516\, i&1.5+0.36327\; 1264\, i\\
1.5+0.36327\; 1264\, i&1.30901\; 6994+0.95105\; 6516\, i\end{bmatrix}.

This Riemann matrix originates from the Riemann surface represented by the algebraic curve \mu^{3}-\lambda^{7}+2\lambda^{3}\mu=0; compare §21.7(i).

(a{}_{1}) (b{}_{1}) (c{}_{1})
(a{}_{2}) (b{}_{2}) (c{}_{2})
(a{}_{3}) (b{}_{3}) (c{}_{3})
Figure 21.4.1: \mathop{\hat{\theta}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right) parametrized by (21.4.1). The surface plots are of \mathop{\hat{\theta}\/}\nolimits\!\left(x+iy,0\middle|\boldsymbol{{\Omega}}\right), 0\leq x\leq 1, 0\leq y\leq 5 (suffix 1); \mathop{\hat{\theta}\/}\nolimits\!\left(x,y\middle|\boldsymbol{{\Omega}}\right), 0\leq x\leq 1, 0\leq y\leq 1 (suffix 2); \mathop{\hat{\theta}\/}\nolimits\!\left(ix,iy\middle|\boldsymbol{{\Omega}}\right), 0\leq x\leq 5, 0\leq y\leq 5 (suffix 3). Shown are the real part (a), the imaginary part (b), and the modulus (c). Magnify

For the scaled Riemann theta functions depicted in Figures 21.4.221.4.5

21.4.2\boldsymbol{{\Omega}}_{1}=\begin{bmatrix}i&-\tfrac{1}{2}\\
-\tfrac{1}{2}&i\end{bmatrix},

and

21.4.3\boldsymbol{{\Omega}}_{2}=\begin{bmatrix}-\tfrac{1}{2}+i&\tfrac{1}{2}-\tfrac{1}{2}i&-\tfrac{1}{2}-\tfrac{1}{2}i\\
\tfrac{1}{2}-\tfrac{1}{2}i&i&0\\
-\tfrac{1}{2}-\tfrac{1}{2}i&0&i\end{bmatrix}.
Figure 21.4.2: \realpart{\mathop{\hat{\theta}\/}\nolimits\!\left(x+iy,0\middle|\boldsymbol{{\Omega}}_{1}\right)}, 0\leq x\leq 1, 0\leq y\leq 5. (The imaginary part looks very similar.) Magnify
Figure 21.4.4: A real-valued scaled Riemann theta function: \mathop{\hat{\theta}\/}\nolimits\!\left(ix,iy\middle|\boldsymbol{{\Omega}}_{1}\right), 0\leq x\leq 4, 0\leq y\leq 4. In this case, the quasi-periods are commensurable, resulting in a doubly-periodic configuration. Magnify
Figure 21.4.5: The real part of a genus 3 scaled Riemann theta function: \realpart{\mathop{\hat{\theta}\/}\nolimits\!\left(x+iy,0,0\middle|\boldsymbol{{\Omega}}_{2}\right)}, 0\leq x\leq 1, 0\leq y\leq 3. This Riemann matrix originates from the genus 3 Riemann surface represented by the algebraic curve \mu^{3}+2\mu-\lambda^{4}=0; compare §21.7(i). Magnify
Choose format for 3D interactive visualization
Format
 
Please see Visualization Help for details, and Customize to change your choice, or for other customizations.