About the Project

pi

AdvancedHelp

(0.001 seconds)

11—20 of 480 matching pages

11: 6.4 Analytic Continuation
6.4.2 E 1 ( z e 2 m π i ) = E 1 ( z ) 2 m π i , m ,
6.4.4 Ci ( z e ± π i ) = ± π i + Ci ( z ) ,
6.4.5 Chi ( z e ± π i ) = ± π i + Chi ( z ) ,
6.4.6 f ( z e ± π i ) = π e i z f ( z ) ,
6.4.7 g ( z e ± π i ) = π i e i z + g ( z ) .
12: 28.30 Expansions in Series of Eigenfunctions
Let λ ^ m , m = 0 , 1 , 2 , , be the set of characteristic values (28.29.16) and (28.29.17), arranged in their natural order (see (28.29.18)), and let w m ( x ) , m = 0 , 1 , 2 , , be the eigenfunctions, that is, an orthonormal set of 2 π -periodic solutions; thus … Then every continuous 2 π -periodic function f ( x ) whose second derivative is square-integrable over the interval [ 0 , 2 π ] can be expanded in a uniformly and absolutely convergent series …
28.30.4 f m = 1 2 π 0 2 π f ( x ) w m ( x ) d x .
13: 24.11 Asymptotic Approximations
24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
24.11.2 ( 1 ) n + 1 B 2 n 4 π n ( n π e ) 2 n ,
24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
24.11.5 ( 1 ) n / 2 1 ( 2 π ) n 2 ( n ! ) B n ( x ) { cos ( 2 π x ) , n  even , sin ( 2 π x ) , n  odd ,
24.11.6 ( 1 ) ( n + 1 ) / 2 π n + 1 4 ( n ! ) E n ( x ) { sin ( π x ) , n  even , cos ( π x ) , n  odd ,
14: 6.16 Mathematical Applications
uniformly for x [ π , π ] . Hence, if x is fixed and n , then S n ( x ) 1 4 π , 0 , or 1 4 π according as 0 < x < π , x = 0 , or π < x < 0 ; compare (6.2.14). … The first maximum of 1 2 Si ( x ) for positive x occurs at x = π and equals ( 1.1789 ) × 1 4 π ; compare Figure 6.3.2. …Similarly if x = π / n , then the limiting value of S n ( x ) undershoots 1 4 π by approximately 10%, and so on. … where π ( x ) is the number of primes less than or equal to x . …
15: 10.64 Integral Representations
10.64.1 ber n ( x 2 ) = ( 1 ) n π 0 π cos ( x sin t n t ) cosh ( x sin t ) d t ,
10.64.2 bei n ( x 2 ) = ( 1 ) n π 0 π sin ( x sin t n t ) sinh ( x sin t ) d t .
16: 10.61 Definitions and Basic Properties
In general, Kelvin functions have a branch point at x = 0 and functions with arguments x e ± π i are complex. …
ber 1 2 ( x 2 ) = 2 3 4 π x ( e x cos ( x + π 8 ) e x cos ( x π 8 ) ) ,
bei 1 2 ( x 2 ) = 2 3 4 π x ( e x sin ( x + π 8 ) + e x sin ( x π 8 ) ) .
ber 1 2 ( x 2 ) = 2 3 4 π x ( e x sin ( x + π 8 ) e x sin ( x π 8 ) ) ,
bei 1 2 ( x 2 ) = 2 3 4 π x ( e x cos ( x + π 8 ) + e x cos ( x π 8 ) ) .
17: 9.2 Differential Equation
9.2.10 Bi ( z ) = e π i / 6 Ai ( z e 2 π i / 3 ) + e π i / 6 Ai ( z e 2 π i / 3 ) .
9.2.12 Ai ( z ) + e 2 π i / 3 Ai ( z e 2 π i / 3 ) + e 2 π i / 3 Ai ( z e 2 π i / 3 ) = 0 ,
9.2.13 Bi ( z ) + e 2 π i / 3 Bi ( z e 2 π i / 3 ) + e 2 π i / 3 Bi ( z e 2 π i / 3 ) = 0 .
9.2.14 Ai ( z ) = e π i / 3 Ai ( z e π i / 3 ) + e π i / 3 Ai ( z e π i / 3 ) ,
9.2.15 Bi ( z ) = e π i / 6 Ai ( z e π i / 3 ) + e π i / 6 Ai ( z e π i / 3 ) .
18: 10.27 Connection Formulas
10.27.8 K ν ( z ) = { 1 2 π i e ν π i / 2 H ν ( 1 ) ( z e π i / 2 ) , π ph z 1 2 π , 1 2 π i e ν π i / 2 H ν ( 2 ) ( z e π i / 2 ) , 1 2 π ph z π .
10.27.9 π i J ν ( z ) = e ν π i / 2 K ν ( z e π i / 2 ) e ν π i / 2 K ν ( z e π i / 2 ) , | ph z | 1 2 π .
10.27.10 π Y ν ( z ) = e ν π i / 2 K ν ( z e π i / 2 ) + e ν π i / 2 K ν ( z e π i / 2 ) , | ph z | 1 2 π .
10.27.11 Y ν ( z ) = e ± ( ν + 1 ) π i / 2 I ν ( z e π i / 2 ) ( 2 / π ) e ν π i / 2 K ν ( z e π i / 2 ) , 1 2 π ± ph z π .
19: 24.9 Inequalities
24.9.6 5 π n ( n π e ) 2 n > ( 1 ) n + 1 B 2 n > 4 π n ( n π e ) 2 n ,
24.9.7 8 n π ( 4 n π e ) 2 n ( 1 + 1 12 n ) > ( 1 ) n E 2 n > 8 n π ( 4 n π e ) 2 n .
24.9.8 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 β 2 n ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 2 n
24.9.9 β = 2 + ln ( 1 6 π 2 ) ln 2 = 0.6491 .
24.9.10 4 n + 1 ( 2 n ) ! π 2 n + 1 > ( 1 ) n E 2 n > 4 n + 1 ( 2 n ) ! π 2 n + 1 1 1 + 3 1 2 n .
20: 11.8 Analogs to Kelvin Functions
§11.8 Analogs to Kelvin Functions
For properties of Struve functions of argument x e ± 3 π i / 4 see McLachlan and Meyers (1936).