24.8 Series Expansions24.10 Arithmetic Properties

§24.9 Inequalities

Except where otherwise noted, the inequalities in this section hold for n=1,2,\ldots.

24.9.1|\mathop{B_{{2n}}\/}\nolimits|>|\mathop{B_{{2n}}\/}\nolimits\!\left(x\right)|,1>x>0,
24.9.2(2-2^{{1-2n}})|\mathop{B_{{2n}}\/}\nolimits|\geq|\mathop{B_{{2n}}\/}\nolimits\!\left(x\right)-\mathop{B_{{2n}}\/}\nolimits|,1\geq x\geq 0.

(24.9.3)–(24.9.5) hold for \tfrac{1}{2}>x>0.

24.9.34^{{-n}}|\mathop{E_{{2n}}\/}\nolimits|>(-1)^{n}\mathop{E_{{2n}}\/}\nolimits\!\left(x\right)>0,
24.9.4\frac{2(2n+1)!}{(2\pi)^{{2n+1}}}>(-1)^{{n+1}}\mathop{B_{{2n+1}}\/}\nolimits\!\left(x\right)>0,n=2,3,\dots,
24.9.5\frac{4(2n-1)!}{\pi^{{2n}}}\frac{2^{{2n}}-1}{2^{{2n}}-2}>(-1)^{n}\mathop{E_{{2n-1}}\/}\nolimits\!\left(x\right)>0.

(24.9.6)–(24.9.7) hold for n=2,3,\ldots.

24.9.65\sqrt{\pi n}\left(\frac{n}{\pi e}\right)^{{2n}}>(-1)^{{n+1}}\mathop{B_{{2n}}\/}\nolimits>4\sqrt{\pi n}\left(\frac{n}{\pi e}\right)^{{2n}},
24.9.78\sqrt{\frac{n}{\pi}}\left(\frac{4n}{\pi e}\right)^{{2n}}\left(1+\frac{1}{12n}\right)>(-1)^{n}\mathop{E_{{2n}}\/}\nolimits>8\sqrt{\frac{n}{\pi}}\left(\frac{4n}{\pi e}\right)^{{2n}}.

Lastly,

24.9.8\frac{2(2n)!}{(2\pi)^{{2n}}}\frac{1}{1-2^{{\beta-2n}}}\geq(-1)^{{n+1}}\mathop{B_{{2n}}\/}\nolimits\geq\frac{2(2n)!}{(2\pi)^{{2n}}}\frac{1}{1-2^{{-2n}}}

with

24.9.9\beta=2+\frac{\mathop{\ln\/}\nolimits\!\left(1-6\pi^{{-2}}\right)}{\mathop{\ln\/}\nolimits 2}=0.6491\dots.
24.9.10\frac{4^{{n+1}}(2n)!}{\pi^{{2n+1}}}>(-1)^{n}\mathop{E_{{2n}}\/}\nolimits>\frac{4^{{n+1}}(2n)!}{\pi^{{2n+1}}}\frac{1}{1+3^{{-1-2n}}}.