About the Project

cross ratio

AdvancedHelp

(0.002 seconds)

21—30 of 34 matching pages

21: 15.9 Relations to Other Functions
15.9.17 𝐅 ( a , a + 1 2 c ; z ) = 2 c 1 z ( 1 c ) / 2 ( 1 z ) a + ( ( c 1 ) / 2 ) P 2 a c 1 c ( 1 1 z ) , | ph z | < π and | ph ( 1 z ) | < π .
15.9.25 E ( k ) = π 2 F ( 1 2 , 1 2 1 ; k 2 ) ,
15.9.26 D ( k ) = π 4 F ( 1 2 , 3 2 2 ; k 2 ) .
22: 10.65 Power Series
10.65.3 ker n x = 1 2 ( 1 2 x ) n k = 0 n 1 ( n k 1 ) ! k ! cos ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ln ( 1 2 x ) ber n x + 1 4 π bei n x + 1 2 ( 1 2 x ) n k = 0 ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! cos ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ,
10.65.4 kei n x = 1 2 ( 1 2 x ) n k = 0 n 1 ( n k 1 ) ! k ! sin ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ln ( 1 2 x ) bei n x 1 4 π ber n x + 1 2 ( 1 2 x ) n k = 0 ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! sin ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k .
§10.65(iii) Cross-Products and Sums of Squares
23: 10.21 Zeros
10.21.24 θ ( 2 1 3 α ) = π t ,
10.21.29 ϕ ( 2 1 3 α ) = π t ,
§10.21(x) Cross-Products
Higher coefficients in the asymptotic expansions in this subsection can be obtained by expressing the cross-products in terms of the modulus and phase functions (§10.18), and then reverting the asymptotic expansion for the difference of the phase functions. … For information on the zeros of the derivatives of Riccati–Bessel functions, and also on zeros of their cross-products, see Boyer (1969). …
24: 4.24 Inverse Trigonometric Functions: Further Properties
4.24.4 arctan z = ± π 2 1 z + 1 3 z 3 1 5 z 5 + , z 0 , | z | 1 .
25: Bibliography D
  • A. Deaño, E. J. Huertas, and F. Marcellán (2013) Strong and ratio asymptotics for Laguerre polynomials revisited. J. Math. Anal. Appl. 403 (2), pp. 477–486.
  • Derive (commercial interactive system) Texas Instruments, Inc..
  • A. R. DiDonato and A. H. Morris (1986) Computation of the incomplete gamma function ratios and their inverses. ACM Trans. Math. Software 12 (4), pp. 377–393.
  • A. R. DiDonato and A. H. Morris (1987) Algorithm 654: Fortran subroutines for computing the incomplete gamma function ratios and their inverses. ACM Trans. Math. Software 13 (3), pp. 318–319.
  • A. R. DiDonato and A. H. Morris (1992) Algorithm 708: Significant digit computation of the incomplete beta function ratios. ACM Trans. Math. Software 18 (3), pp. 360–373.
  • 26: 33.2 Definitions and Basic Properties
    33.2.5 C ( η ) = 2 e π η / 2 | Γ ( + 1 + i η ) | ( 2 + 1 ) ! .
    33.2.6 C ( η ) = 2 ( ( 2 π η / ( e 2 π η 1 ) ) k = 1 ( η 2 + k 2 ) ) 1 / 2 ( 2 + 1 ) ! .
    33.2.7 H ± ( η , ρ ) = ( i ) e ( π η / 2 ) ± i σ ( η ) W i η , + 1 2 ( 2 i ρ ) ,
    33.2.9 θ ( η , ρ ) = ρ η ln ( 2 ρ ) 1 2 π + σ ( η ) ,
    §33.2(iv) Wronskians and Cross-Product
    27: 2.11 Remainder Terms; Stokes Phenomenon
    2.11.1 I ( m ) = 0 π cos ( m t ) t 2 + 1 d t ,
    2.11.2 I ( m ) ( 1 ) m s = 1 q s ( π ) m 2 s , m ,
    2.11.16 c ( θ ) = 2 ( 1 + e i θ + i ( θ π ) ) ,
    2.11.18 h 0 ( θ , α ) = e i α ( π θ ) 1 + e i θ i c ( θ ) .
    As these lines are crossed exponentially-small contributions, such as that in (2.11.7), are “switched on” smoothly, in the manner of the graph in Figure 2.11.1. …
    28: Bibliography L
  • L. J. Landau (1999) Ratios of Bessel functions and roots of α J ν ( x ) + x J ν ( x ) = 0 . J. Math. Anal. Appl. 240 (1), pp. 174–204.
  • H. T. Lau (1995) A Numerical Library in C for Scientists and Engineers. CRC Press, Boca Raton, FL.
  • L. Lorch (2002) Comparison of a pair of upper bounds for a ratio of gamma functions. Math. Balkanica (N.S.) 16 (1-4), pp. 195–202.
  • 29: 4.37 Inverse Hyperbolic Functions
    The principal values (or principal branches) of the inverse sinh , cosh , and tanh are obtained by introducing cuts in the z -plane as indicated in Figure 4.37.1(i)-(iii), and requiring the integration paths in (4.37.1)–(4.37.3) not to cross these cuts. …
    4.37.11 arccosh ( z ) = ± π i + arccosh z , z 0 .
    4.37.14 arcsech ( z ) = π i + arcsech z , z 0 .
    4.37.20 arccosh ( i y ) = ± 1 2 π i + ln ( ( y 2 + 1 ) 1 / 2 ± y ) , y 0 .
    30: 4.23 Inverse Trigonometric Functions
    The principal values (or principal branches) of the inverse sine, cosine, and tangent are obtained by introducing cuts in the z -plane as indicated in Figures 4.23.1(i) and 4.23.1(ii), and requiring the integration paths in (4.23.1)–(4.23.3) not to cross these cuts. …
    4.23.11 arccos ( z ) = π arccos z .
    4.23.14 arcsec ( z ) = π arcsec z .
    4.23.16 arccos z = 1 2 π arcsin z ,
    4.23.17 arcsec z = 1 2 π arccsc z .