About the Project

Riemann differential equation

AdvancedHelp

(0.006 seconds)

11—20 of 34 matching pages

11: Bibliography C
β–Ί
  • T. W. Chaundy (1969) Elementary Differential Equations. Clarendon Press, Oxford.
  • β–Ί
  • D. S. Clemm (1969) Algorithm 352: Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12 (7), pp. 399–407.
  • β–Ί
  • C. W. Clenshaw (1957) The numerical solution of linear differential equations in Chebyshev series. Proc. Cambridge Philos. Soc. 53 (1), pp. 134–149.
  • β–Ί
  • E. A. Coddington and N. Levinson (1955) Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • β–Ί
  • L. Collatz (1960) The Numerical Treatment of Differential Equations. 3rd edition, Die Grundlehren der Mathematischen Wissenschaften, Vol. 60, Springer, Berlin.
  • 12: Bibliography D
    β–Ί
  • K. Dekker and J. G. Verwer (1984) Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. CWI Monographs, Vol. 2, North-Holland Publishing Co., Amsterdam.
  • β–Ί
  • T. M. Dunster (1996c) Error bounds for exponentially improved asymptotic solutions of ordinary differential equations having irregular singularities of rank one. Methods Appl. Anal. 3 (1), pp. 109–134.
  • β–Ί
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • β–Ί
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • β–Ί
  • A. J. Durán and F. A. Grünbaum (2005) A survey on orthogonal matrix polynomials satisfying second order differential equations. J. Comput. Appl. Math. 178 (1-2), pp. 169–190.
  • 13: 1.9 Calculus of a Complex Variable
    β–ΊEquations (1.9.18) and (1.9.20) hold for general values of the phases, but not necessarily for the principal values. … β–Ί
    Cauchy–Riemann Equations
    β–Ί
    u x = v y ,
    β–Ί
    u y = v x
    β–ΊConversely, if at a given point ( x , y ) the partial derivatives u / x , u / y , v / x , and v / y exist, are continuous, and satisfy (1.9.25), then f ⁑ ( z ) is differentiable at z = x + i ⁒ y . …
    14: Bibliography V
    β–Ί
  • J. van de Lune, H. J. J. te Riele, and D. T. Winter (1986) On the zeros of the Riemann zeta function in the critical strip. IV. Math. Comp. 46 (174), pp. 667–681.
  • β–Ί
  • G. Vedeler (1950) A Mathieu equation for ships rolling among waves. I, II. Norske Vid. Selsk. Forh., Trondheim 22 (25–26), pp. 113–123.
  • β–Ί
  • H. Volkmer (2008) Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials. J. Comput. Appl. Math. 213 (2), pp. 488–500.
  • β–Ί
  • H. von Koch (1901) Über die Riemann’sche Primzahlfunction. Math. Ann. 55, pp. 441–464 (German).
  • β–Ί
  • A. P. Vorob’ev (1965) On the rational solutions of the second Painlevé equation. Differ. Uravn. 1 (1), pp. 79–81 (Russian).
  • 15: 21.7 Riemann Surfaces
    §21.7 Riemann Surfaces
    β–Ί
    §21.7(i) Connection of Riemann Theta Functions to Riemann Surfaces
    β–ΊOn a Riemann surface of genus g , there are g linearly independent holomorphic differentials Ο‰ j , j = 1 , 2 , , g . If a local coordinate z is chosen on the Riemann surface, then the local coordinate representation of these holomorphic differentials is given by … β–Ί
    §21.7(iii) Frobenius’ Identity
    16: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    β–Ί
    Hermite’s Differential Equation, X = ( , )
    β–ΊWriting Hermite’s differential equation (see Tables 18.3.1 and 18.8.1) in the form above, the eigenfunctions are e x 2 / 2 ⁒ H n ⁑ ( x ) ( H n a Hermite polynomial, n = 0 , 1 , 2 , ), with eigenvalues Ξ» n = 2 ⁒ n + 1 𝝈 p , for the differential operator … β–ΊBy Bessel’s differential equation in the form (10.13.1) we have the functions x ⁒ J Ξ½ ⁑ ( x ⁒ Ξ» ) ( Ξ» 0 , for J Ξ½ see §10.2(ii)) as eigenfunctions with eigenvalue Ξ» of the self-adjoint extension of the differential operator … β–Ίβ–Ί
    17: Bibliography S
    β–Ί
  • B. I. Schneider, X. Guan, and K. Bartschat (2016) Time propagation of partial differential equations using the short iterative Lanczos method and finite-element discrete variable representation. Adv. Quantum Chem. 72, pp. 95–127.
  • β–Ί
  • R. B. Shirts (1993a) The computation of eigenvalues and solutions of Mathieu’s differential equation for noninteger order. ACM Trans. Math. Software 19 (3), pp. 377–390.
  • β–Ί
  • G. F. Simmons (1972) Differential Equations with Applications and Historical Notes. McGraw-Hill Book Co., New York.
  • β–Ί
  • R. Spigler (1984) The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98 (1), pp. 130–147.
  • β–Ί
  • F. Stenger (1966a) Error bounds for asymptotic solutions of differential equations. I. The distinct eigenvalue case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 167–186.
  • 18: Bibliography L
    β–Ί
  • V. LaΔ­ (1994) The two-point connection problem for differential equations of the Heun class. Teoret. Mat. Fiz. 101 (3), pp. 360–368 (Russian).
  • β–Ί
  • C. G. Lambe and D. R. Ward (1934) Some differential equations and associated integral equations. Quart. J. Math. (Oxford) 5, pp. 81–97.
  • β–Ί
  • W. R. Leeb (1979) Algorithm 537: Characteristic values of Mathieu’s differential equation. ACM Trans. Math. Software 5 (1), pp. 112–117.
  • β–Ί
  • J. Letessier, G. Valent, and J. Wimp (1994) Some Differential Equations Satisfied by Hypergeometric Functions. In Approximation and Computation (West Lafayette, IN, 1993), Internat. Ser. Numer. Math., Vol. 119, pp. 371–381.
  • β–Ί
  • N. A. LukaΕ‘evič (1971) The second Painlevé equation. Differ. Uravn. 7 (6), pp. 1124–1125 (Russian).
  • 19: Bibliography B
    β–Ί
  • A. W. Babister (1967) Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations. The Macmillan Co., New York.
  • β–Ί
  • G. Birkhoff and G. Rota (1989) Ordinary differential equations. Fourth edition, John Wiley & Sons, Inc., New York.
  • β–Ί
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • β–Ί
  • J. C. Butcher (1987) The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and General Linear Methods. John Wiley & Sons Ltd., Chichester.
  • β–Ί
  • J. C. Butcher (2003) Numerical Methods for Ordinary Differential Equations. John Wiley & Sons Ltd., Chichester.
  • 20: Bibliography W
    β–Ί
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • β–Ί
  • Z. Wang and R. Wong (2006) Uniform asymptotics of the Stieltjes-Wigert polynomials via the Riemann-Hilbert approach. J. Math. Pures Appl. (9) 85 (5), pp. 698–718.
  • β–Ί
  • W. Wasow (1965) Asymptotic Expansions for Ordinary Differential Equations. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney.
  • β–Ί
  • H. Watanabe (1995) Solutions of the fifth Painlevé equation. I. Hokkaido Math. J. 24 (2), pp. 231–267.
  • β–Ί
  • R. Wong and H. Y. Zhang (2007) Asymptotic solutions of a fourth order differential equation. Stud. Appl. Math. 118 (2), pp. 133–152.