About the Project

Bailey 2F1(-1) sum

AdvancedHelp

(0.014 seconds)

21—30 of 817 matching pages

21: 22.18 Mathematical Applications
In polar coordinates, x = r cos ϕ , y = r sin ϕ , the lemniscate is given by r 2 = cos ( 2 ϕ ) , 0 ϕ 2 π . … With k [ 0 , 1 ] the mapping z w = sn ( z , k ) gives a conformal map of the closed rectangle [ K , K ] × [ 0 , K ] onto the half-plane w 0 , with 0 , ± K , ± K + i K , i K mapping to 0 , ± 1 , ± k 2 , respectively. …See Akhiezer (1990, Chapter 8) and McKean and Moll (1999, Chapter 2) for discussions of the inverse mapping. … The special case y 2 = ( 1 x 2 ) ( 1 k 2 x 2 ) is in Jacobian normal form. For any two points ( x 1 , y 1 ) and ( x 2 , y 2 ) on this curve, their sum ( x 3 , y 3 ) , always a third point on the curve, is defined by the Jacobi–Abel addition law …
22: 10.59 Integrals
10.59.1 e i b t 𝗃 n ( t ) d t = { π i n P n ( b ) , 1 < b < 1 , 1 2 π ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
23: 4.4 Special Values and Limits
4.4.2 ln ( 1 ± i 0 ) = ± π i ,
4.4.3 ln ( ± i ) = ± 1 2 π i .
4.4.10 e ± π i / 4 = 1 2 ± i 1 2 ,
4.4.11 e ± 3 π i / 4 = 1 2 ± i 1 2 ,
where a ( ) and δ ( ( 0 , 1 2 π ] ) are constants. …
24: 17.8 Special Cases of ψ r r Functions
17.8.1 n = ( z ) n q n ( n 1 ) / 2 = ( q , z , q / z ; q ) ;
17.8.3 n = ( 1 ) n q n ( 3 n 1 ) / 2 z 3 n ( 1 + z q n ) = ( q , z , q / z ; q ) ( q z 2 , q / z 2 ; q 2 ) .
Bailey’s Bilateral Summations
Sum Related to (17.6.4)
17.8.8 ψ 2 2 ( b 2 , b 2 / c q , c q ; q 2 , c q 2 / b 2 ) = 1 2 ( q 2 , q b 2 , q / b 2 , c q / b 2 ; q 2 ) ( c q , c q 2 / b 2 , q 2 / b 2 , c / b 2 ; q 2 ) ( ( c q / b ; q ) ( b q ; q ) + ( c q / b ; q ) ( b q ; q ) ) , | c q 2 | < | b 2 | .
25: 28.25 Asymptotic Expansions for Large z
28.25.1 M ν ( 3 , 4 ) ( z , h ) e ± i ( 2 h cosh z ( 1 2 ν + 1 4 ) π ) ( π h ( cosh z + 1 ) ) 1 2 m = 0 D m ± ( 4 i h ( cosh z + 1 ) ) m ,
D 1 ± = 0 ,
D 0 ± = 1 ,
28.25.3 ( m + 1 ) D m + 1 ± + ( ( m + 1 2 ) 2 ± ( m + 1 4 ) 8 i h + 2 h 2 a ) D m ± ± ( m 1 2 ) ( 8 i h m ) D m 1 ± = 0 , m 0 .
28.25.4 z + , π + δ ph h + z 2 π δ ,
26: 32.7 Bäcklund Transformations
with ζ = 2 1 / 3 z and ε = ± 1 , where W ( ζ ; 1 2 ε ) satisfies P II  with z = ζ , α = 1 2 ε , and w ( z ; 0 ) satisfies P II  with α = 0 . The solutions w α = w ( z ; α ) , w α ± 1 = w ( z ; α ± 1 ) , satisfy the nonlinear recurrence relation … and ε j = ± 1 , j = 1 , 2 , 3 , independently. …Again, since ε j = ± 1 , j = 1 , 2 , 3 , independently, there are eight distinct transformations of type 𝒯 ε 1 , ε 2 , ε 3 . … with ε = ± 1 . …
27: 10.6 Recurrence Relations and Derivatives
H 0 ( 1 ) ( z ) = H 1 ( 1 ) ( z ) , H 0 ( 2 ) ( z ) = H 1 ( 2 ) ( z ) .
For results on modified quotients of the form z 𝒞 ν ± 1 ( z ) / 𝒞 ν ( z ) see Onoe (1955) and Onoe (1956). … For k = 0 , 1 , 2 , , …
10.6.7 𝒞 ν ( k ) ( z ) = 1 2 k n = 0 k ( 1 ) n ( k n ) 𝒞 ν k + 2 n ( z ) .
s ν = 1 2 p ν + 1 + 1 2 p ν 1 ν 2 a b p ν ,
28: 17.1 Special Notation
The main functions treated in this chapter are the basic hypergeometric (or q -hypergeometric) function ϕ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , the bilateral basic hypergeometric (or bilateral q -hypergeometric) function ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , and the q -analogs of the Appell functions Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) , Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) , Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) , and Φ ( 4 ) ( a , b ; c , c ; q ; x , y ) . … Another function notation used is the “idem” function:
f ( χ 1 ; χ 2 , , χ n ) + idem ( χ 1 ; χ 2 , , χ n ) = j = 1 n f ( χ j ; χ 1 , χ 2 , , χ j 1 , χ j + 1 , , χ n ) .
A slightly different notation is that in Bailey (1964) and Slater (1966); see §17.4(i). Fine (1988) uses F ( a , b ; t : q ) for a particular specialization of a ϕ 1 2 function.
29: 15.4 Special Cases
Exceptions are (15.4.8) and (15.4.10), that hold for | z | < π / 4 , and (15.4.12), (15.4.14), and (15.4.16), that hold for | z | < π / 2 . …
§15.4(ii) Argument Unity
Dougall’s Bilateral Sum
§15.4(iii) Other Arguments
where the limit interpretation (15.2.6), rather than (15.2.5), has to be taken when in (15.4.33) a = 1 3 , 4 3 , 7 3 , , and in (15.4.34) a = 0 , 1 , 2 , . …
30: 4.37 Inverse Hyperbolic Functions
In (4.37.1) the integration path may not pass through either of the points t = ± i , and the function ( 1 + t 2 ) 1 / 2 assumes its principal value when t is real. In (4.37.2) the integration path may not pass through either of the points ± 1 , and the function ( t 2 1 ) 1 / 2 assumes its principal value when t ( 1 , ) . …In (4.37.3) the integration path may not intersect ± 1 . … Arcsinh z and Arccsch z have branch points at z = ± i ; the other four functions have branch points at z = ± 1 . … For example, arcsech a = arccoth ( ( 1 a 2 ) 1 / 2 ) .